ebook img

Radial positive definite functions and spectral theory of the Schr\"odinger operators with point interactions PDF

0.28 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Radial positive definite functions and spectral theory of the Schr\"odinger operators with point interactions

MathematischeNachrichten,24January2017 Radial positive definite functions and spectral theory of the Schro¨dinger operators with point interactions N.Goloshchapova1, ,M.Malamud1, ,andV.Zastavnyi2, ∗ ∗∗ ∗∗∗ 1 R.Luxemburgstr.74, 83114Donetsk,Ukraine 7 2 Univesitetskajastr.24, 83001Donetsk,Ukraine 1 0 2 Keywords Schro¨dingeroperator,pointinteractions,self-adjointextension,spectrum,positivedefinitefunction n MSC(2000) 47A10,47B25 a J Dedicatedtothe75thanniversaryofEduardTsekanovskii. 3 WecompletetheclassicalSchoenbergrepresentationtheoremforradialpositivedefinitefunctions. Weapply 2 thisresulttostudy spectral propertiesof self-adjoint realizations of two-and three-dimensional Schro¨dinger operatorswithpointinteractionsonafiniteset.Inparticular,weprovethatanyrealizationhaspurelyabsolutely ] P continuousnon-negativespectrum. S Copyrightlinewillbeprovidedbythepublisher . h t a m 1 Introduction [ An importanttopic in quantummechanicsis the spectral theoryof Schro¨dingeroperatorson the Hilbertspace 1 L2(Rd), d 1,2,3 ,withpotentialssupportedonadiscrete(finiteorcountable)setofpointsofRd. Thereis v ∈ { } anextensiveliteratureonsuchoperators(see[1,3–5,8,10,20,22,26,28]andreferencestherein).Thefirstmath- 6 3 ematicalproblemistoassociateaself-adjointoperator(Hamiltonian)onL2(Rd)withthedifferentialexpression 4 6 m 0 Ld := ∆+ αjδ( xj), αj R, m N. (1.1) − ·− ∈ ∈ 1. Xj=1 0 Thereareatleasttwonaturalwaystoassociateself-adjointoperatorHX,αwiththefollowingdifferentialexpres- 7 sioninL2(R1) 1 : d2 m v L := + α δ( x ), m N i 1 −dx2 j ·− j ∈ X j=1 X r for any fixed set α := α m R. The first one is based on the quadratic forms method. Another way to a { j}j=1 ⊂ introduce local interactionson X := x m R is to consider maximal operator correspondingto L and { j}j=1 ⊂ 1 imposeboundaryconditionsatx , j 1,..,m (see[3]),i.e., j ∈{ } dom(H )= f W2,2(R X) W1,2(R):f (x +) f (x )=α f(x ) . X,α ′ j ′ j j j { ∈ \ ∩ − − } Incontrasttoone-dimensionalcase,thedifferentialexpression(1.1)doesnotdefineanoperatorinL2(Rd), d 2,bymeansofthequadraticformssincethelinearfunctionalδ : f f(x)isnotcontinuousinW1,2(Rd) x ≥ → ford 2.However,itisstillpossibletoapplytheextensiontheoryapproach.Namely,F.BerezinandL.Faddeev ≥ intheirpioneeringpaper[8]proposedtoconsider(1.1)(withm = 1andd = 3)intheframeworkofextension theory.TheyassociatedwithL thefamilyofallself-adjointextensionsofthefollowingsymmetricoperator d H := ∆, dom(H):= f W2,2(Rd):f(x )=0, j 1,..,m , m N. (1.2) j − ∈ ∈{ } ∈ ∗ Correspondingauthor E-mail:nataliia@i(cid:8)me.usp.br, (cid:9) ∗∗ E-mail:[email protected]. ∗∗∗ E-mail:[email protected]. Copyrightlinewillbeprovidedbythepublisher 2 N.Goloshchapova,M.Malamud,andV.Zastavnyi:SpectraltheoryoftheSchro¨dingeroperatorswithpointinteractions It is wellknownthatH is closed non-negativesymmetricoperatorwith equaldeficiencyindicesn (H) = m (see[3]). In[3],theauthorsproposedtoassociatewiththeHamiltonian(1.1)certainm-parametricfa±milyH(d) X,α describinglocalpointinteractions. Theyparameterizedthefamilyintermsoftheresolvents. Thelatterenabled theauthorstoobtainanexplicitdescriptionofthespectrumforanyoperatorfromthefamilyH(d) . X,α Intherecentpublications[5,10,20], boundarytripletsandthecorrespondingWeylfunctionstechnique(see [12,19] and also Section 2.1) was involved to investigate multi-dimensionalSchro¨dinger operators with point interactions(thecasesd 2,3 ). Inthepresentpaper,weapplyboundarytripletsapproachtoparametrizeall ∈ { } self-adjointextensionsofH.Besides,usingWeylfunctionstechnique,weinvestigatetheirspectra.Moreover,we substantiallyinvolvethetheoryofradialpositivedefinitefunctions[2,chapterV]inourapproach. Inparticular, weemploystrictpositivedefiniteness(seeDefinition3.1)ofthefunctionssinss|·| andtheBesselfunctionsJ0(s|·|) with anys > 0 onR3 andR2, respectively,toprovepureabsolutecontinu|i·t|yofnon-negativespectrumofany self-adjointrealizationofL . ForthispurposewecompletetheclassicalSchoenbergtheorem[31]regardingthe d integralrepresentationofradialpositivedefinitefunctions. The paper is organized as follows. Section 2 is introductory. It contains definitions of a boundary triplet and the corresponding Weyl function [12,19] and also facts about the Weyl functions [9,23]. In Section 3, wecompleteSchoenbergtheorembyestablishingstrictpositivedefinitenessofanynon-constantradialpositive definitefunctiononRn, n 2.InSections4and5,weinvestigate3D-and2D-Schro¨dingeroperatorswithpoint ≥ interactions,respectively. Namely,inSubsection4.1(resp.,5.1),wedefineboundarytripletΠ = ,Γ ,Γ forH andcomputethe 0 1 ∗ {H } correspondingWeylfunction. ItappearstobeclosetothatcontainedinKrein’sresolventformulaforthefamily H(d) in[3]. Inparticular,fortheproofofthesurjectivityofthemappingΓ = (Γ ,Γ ) weemploythestrict X,α 0 1 ⊤ positivedefinitenessofthefunctione onRnforany n N. −|·| ∈ Subsections4.2and 5.2 are devotedto the spectralanalysis of the self-adjointrealizationsof L . To inves- d tigate the absolutely continuousspectrum we apply technique elaborated in [9,23]. For this purpose we need invertibilityofthematrices m δ + sin(√x|xk−xj|) and J (√xx x ) m , x R , kj √xx x +δ 0 | j − k| j,k=1 ∈ + (cid:18) | k− j| kj(cid:19)j,k=1 (cid:0) (cid:1) whichweextractfromthestrictpositivedefinitenessofthefunctions sinss|·| andJ0(s|·|), s>0,onR3andR2, respectively.WeemphasizethatintheproofofTheorems4.7and5.7ou|r·|complementtoSchoenbergtheoremis usedinfullgenerality.Indeed,itfollowsfromtheintegralrepresentation(3.2)thatthestrictpositivedefiniteness of sinss|·| andJ0(s|·|)foralls > 0yieldsthestrictpositivedefinitenessofanyradialpositivedefinitefunction f onR|·|3andR2,respectively. Finally, descriptionof the non-negativeself-adjointextensionsof H (d = 3) is providedin Subsection 4.3. For suitable choice of a boundarytripletΠ strongresolventlimit of the correspondingWeyl functionM(x) at x = 0appearstobepositivedefinitematrixinaviewofstrictpositivedefinitenessofthefunction 1−e−|·| on Rnforany n N. e |·|f ∈ Notation.LetHand denoteseparableHilbertspaces;[H, ]denotesthespaceofboundedlinearoperators H H from H to , [ ] := [ , ]; the set of closedoperatorsin is denotedby ( ). Let A be a linear operator H H H H H C H inaHilbertspaceH. Inwhatfollowsdomain,kernel,andrangeofAaredenotedbydom(A),ker(A),ran(A), respectively;σ(A)andρ(A)denotethespectrumandtheresolventsetofA;N denotesthedefectsubspaceof z A; C[0, )denotestheBanachspaceoffunctionscontinuousandboundedon[0, ). ∞ ∞ 2 Extension theory ofsymmetricoperators 2.1 Boundarytripletsandproperextensions In this subsection, we recall basic notions and facts of the theory of boundary triplets (we refer the reader to [12,13,19]foradetailedexposition).InwhatfollowsAalwaysdenotesaclosedsymmetricoperatorinseparable HilbertspaceHwithequaldeficiencyindicesn (A)=n (A) . + − ≤∞ Copyrightlinewillbeprovidedbythepublisher mnheaderwillbeprovidedbythepublisher 3 Definition2.1 [19] AtotalityΠ = ,Γ ,Γ iscalledaboundarytripletfortheadjointoperatorA ofA 0 1 ∗ {H } if isanauxiliaryHilbertspaceandΓ ,Γ : dom(A ) arelinearmappingssuchthat 0 1 ∗ H →H (i)thefollowingabstractsecondGreenidentityholds (A∗f,g)H (f,A∗g)H =(Γ1f,Γ0g) (Γ0f,Γ1g) , f,g dom(A∗); (2.1) − H− H ∈ (ii)themappingΓ:=(Γ ,Γ ) :dom(A ) issurjective. 0 1 ⊤ ∗ →H⊕H WithaboundarytripletΠ= ,Γ ,Γ forA oneassociatestwoself-adjointextensionsofAdefinedby 0 1 ∗ {H } A0 :=A∗↾ker(Γ0) and A1 :=A∗↾ker(Γ1). Definition2.2 (i)AclosedextensionAofAiscalledproperifA A A . Thesetofallproperextensions ∗ ⊆ ⊆ ofAisdenotedbyExt . A (ii)TwoproperextensionsA andA eofAarecalleddisjointifdome(A ) dom(A )=dom(A). 1 2 1 2 ∩ Remark2.3 (i)ForanysymmetricoperatorAwithn (A) = n (A), aboundarytripletΠ = ,Γ ,Γ + 0 1 forA existsandisnotunique[1e9].Itiseknownalsothatdim =n −(A)aendkerΓ=keer(Γ ,Γ ) {=Hdom(A)}. ∗ 0 1 ⊤ H ± (ii)Moreover,foreachself-adjointextensionAofA thereexistsa boundarytripletΠ = ,Γ ,Γ such 0 1 {H } thatA=A ↾ker(Γ )=:A . ∗ 0 0 (iii) For each boundarytriplet Π = ,Γ ,Γe for A and each bounded self-adjoint operator B in a 0 1 ∗ {H } H tripleetΠB ={H,ΓB0,ΓB1}withΓB1 :=Γ0andΓB0 :=BΓ0−Γ1isalsoaboundarytripletforA∗. AroleofaboundarytripletforA intheextensiontheoryissimilartothatofcoordinatesystemintheanalytic ∗ geometry.Namely,itallowsonetoparameterizethesetExt bymeansoflinearrelationsin inplaceofJ.von A H Neumannformulas.Toexplainthiswerecallthefollowingdefinitions. Definition2.4 (i)AclosedlinearrelationΘin isaclosedsubspaceof . H H⊕H (ii)AlinearrelationΘissymmetricif(g ,f ) (f ,g )=0forall f ,g , f ,g Θ. 1 2 1 2 1 1 2 2 − { } { }∈ (iii)TheadjointrelationΘ isdefinedby ∗ Θ∗ = k,k′ :(h′,k)=(h,k′) forall h,h′ Θ . {{ } { }∈ } (iv)AclosedlinearrelationΘiscalledself-adjointifbothΘandΘ aremaximalsymmetric,i.e.,theydonot ∗ admitsymmetricextensions. For the symmetric relation Θ Θ in the multivalued part mul(Θ) is the orthogonal complement of ∗ ⊆ H dom(Θ)in . Setting := dom(Θ)and = mul(Θ),oneverifiesthatΘcanberewrittenasthedirect op H H H∞ orthogonalsumofaself-adjointoperatorΘ inthesubspace anda“pure”relationΘ = 0,f : f op op ′ ′ H ∞ { } ∈ mul(Θ) inthesubspace . H∞ (cid:8) Proposition2.5 [12,19]LetΠ= ,Γ ,Γ beaboundarytripletforA . Thenthemapping (cid:9) {H 0 1} ∗ Ext A:=A Θ:=Γ(dom(A))= Γ f,Γ f : f dom(A) (2.2) A Θ 0 1 ∋ → {{ } ∈ } establishesabijectivecorrespondencebetweenthesetofallclosedproperextensionsExt ofAandthesetof e e e A allclosedlinearrelations ( )in . Furthermore,thefollowingassertionshold. C H H (i)Theequality(A ) =A holdsforanyΘ ( ). Θ ∗ Θ ∗ ∈C H (ii)TheextensionA ien(2.2)issymmetric(self-adjoint)ifandonlyif Θissymmetric(self-adjoint). More- Θ over,n (A )=n (Θ). e Θ ± ± (iii)If,inaddition,theclosedextensionsA andA aredisjoint,then(2.2)takestheform Θ 0 A =A =A ↾dom(A ), dom(A )=dom(A )↾ker Γ BΓ , B ( ). Θ B ∗ B B ∗ 1 0 − ∈C H (cid:0) (cid:1) 2.2 Weylfunction,γ-fieldandspectraofproperextensions ItisknownthatWeylfunctionisanimportanttoolinthespectraltheoryofsingularSturm-Liouvilleoperators.In [12,13]theconceptofWeylfunctionwasgeneralizedtoanarbitrarysymmetricoperatorAwithequaldeficiency indices. InthissubsectionwerecallbasicfactsaboutWeylfunctions. Copyrightlinewillbeprovidedbythepublisher 4 N.Goloshchapova,M.Malamud,andV.Zastavnyi:SpectraltheoryoftheSchro¨dingeroperatorswithpointinteractions Definition2.6 [12]LetΠ= ,Γ ,Γ beaboundarytripletforA .TheoperatorvaluedfunctionM(): 0 1 ∗ {H } · ρ(A ) [ ]definedby 0 → H M(z)Γ f =Γ f , f N , z ρ(A ), (2.3) 0 z 1 z z z 0 ∈ ∈ iscalledtheWeylfunction,correspondingtothetripletΠ. ThedefinitionoftheWeylfunctioniscorrectandtheWeylfunctionM()isNevanlinnaorR-function. · Inthefollowingwewillbeconcernedwithasimplesymmetricoperators.RecallthatasymmetricoperatorA issaidtobesimpleifthereisnonontrivialsubspacewhichreducesittoself-adjointoperator. Thespectrumandtheresolventsetoftheclosed(notnecessarilyself-adjoint)extensionsofsimplesymmetric operatorAcanbedescribedwiththehelpofthefunctionM(). Namely,thefollowingpropositionholds. · Proposition2.7 LetAbeadenselydefinedsimple symmetricoperatorinH, Θ ( ), A Ext , and Θ A ∈ C H ∈ z ρ(A ). Thenthefollowingequivalenceshold. 0 ∈ (i)z ρ(A ) 0 ρ(Θ M(z)); e Θ ∈ ⇐⇒ ∈ − (ii) z σ (A ) 0 σ (Θ M(z)), τ p, c, r ; τ Θ τ ∈ ⇐⇒ ∈ − ∈{ } (iii)f ker(A z) Γ f ker(Θ M(z)) and dimker(A z)=dimker(Θ M(z)). z Θ 0 z Θ ∈ − ⇐⇒ ∈ − − − The followingpropositiongivesus quantitativecharacterizationof the negativespectrumof self-adjointex- tensionsoftheoperatorA. Proposition 2.8 [12] Let A be a densely defined non-negative symmetric operator in H, and let Π = ,Γ ,Γ be a boundarytriplet for A . Let also M() be the correspondingWeyl function and A = A , 0 1 ∗ 0 F {H } · whereA istheFriedrichsextensionofA. Thenthefollowingassertionshold. F (i) The strong resolvent limit M(0) := s R limM(x) exists and is self-adjoint linear relation semi- − − x 0 boundedfrombelow. ↑ (ii) If, in addition, M(0) [ ], then the number of negative squares of A = A equals the number of ∈ H Θ ∗Θ negativesquaresoftherelationΘ M(0),i.e.,κ (A )=κ (Θ M(0)). Θ − − − − Inparticular,theself-adjointextensionA ofAisnon-negativeifandonlyifthelinearrelationΘ M(0)is Θ − non-negative. Denote M(x+i0):=s limM(x+iy), d (x):=rank(Im(M(x+i0))), M −y 0 ↓ M (z):=(M(z)h,h), Ω (M ):= x R: 0<Im(M (x+i0))<+ , z C , h , h ac h h + { ∈ ∞} ∈ ∈H whereM (x+i0):=lim (M(x+iy)h,h). SinceIm(M (z))>0, z C ,thelimitM (x+i0)existsand h y 0 h + h isfinitefora.e. x R. ↓ ∈ ∈ Tostatethenextpropositionweneedaconceptoftheabsolutelycontinuousclosurecl (δ)ofaBorelsubset ac δ Rintroducedin[9]and[16]. Wereferto[16,23]forthedefinitionandbasicproperties. ⊂ Proposition2.9 [9,23]LetAbeasimpledenselydefinedclosedsymmetricoperatorwithequaldeficiency indices in separable Hilbert space H. Let Π = ,Γ ,Γ be a boundary triplet for A and M() the cor- 0 1 ∗ {H } · responding Weyl function. Assume also that τ = h N , 1 N is a total set in .Let also { k}k=1 ≤ ≤ ∞ H A =A ↾ker(Γ BΓ ),withB =B ( ). Thenthefollowingassertionshold. B ∗ 1 0 ∗ − ∈C H (i)TheoperatorA hasnosingularcontinuousspectrumwithintheinterval(a,b)ifforeachk 1,2,..,N 0 ∈{ } theset(a,b) Ω (M )iscountable. (ii)Ifthe\limiatcM(xhk+i0)existsfora.e.x R,thenσ (A )=cl (supp(d (x))). ac 0 ac M (iii)ForanyBorelsubset Rtheabsolu∈telycontinuouspartsA Eac( )andA Eac ( )oftheoperators D ⊂ 0 A0 D B AB D A E ( )andA E ( )areunitarilyequivalentifandonlyif d (x)=d (x)fora.e. x . 0 A0 D B AB D M MB ∈D 3 Positivedefinite functions. Complement oftheSchoenberg theorem Let(u,v)=u v +...+u v beascalarproductoftwovectorsu=(u ,...,u )andv =(v ,...,v )from 1 1 n n 1 n 1 n Rn, n N, and let u = (u,u) be Euclidean norm. Recall some basic facts and notions of the theory of ∈ | | positivedefinitefunctions[2]. p Copyrightlinewillbeprovidedbythepublisher mnheaderwillbeprovidedbythepublisher 5 Definition3.1 [2,33](i)Functiong() : Rn CissaidtobepositivedefiniteonRn andisreferredtothe classΦ(Rn)ifitiscontinuousat0andfor·anyfin→itesubsetsX := x m Rnandξ := ξ m C, m Nthefollowinginequalityholds { k}k=1 ⊂ { k}k=1 ⊂ ∈ m ξ ξ g(x x ) 0. (3.1) k j k− j ≥ k,j=1 X (ii)Moreover,g() issaid tobe strictlypositiveonRn ifthe inequality(3.1) isstrictforanysubsetofdistinct pointsX = x m· Rnandforanysubsetξ = ξ m Csatisfyingcondition m ξ >0. { k}k=1 ⊂ { k}k=1 ⊂ k=1| k| Clearly, positivedefinitenessofthe functiong()isequivalentto thenon-negativedefinitenessofthematrix G(X) = (g )m with g = g(x x ) for· any subset X = x m RnP, while its strict positive kj k,j=1 kj k − j { k}k=1 ⊂ definiteness is equivalent to (strict) positive definiteness of the matrix G(X) for any subset of distinct points X = x m Rn. Th{efko}llko=w1in⊂gclassicalBochnertheoremgivesthedescriptionoftheclassΦ(Rn). Theorem3.2 [11]Afunctiong()ispositivedefiniteonRnifandonlyif · g(x)= ei(u,x)dµ(u), RZn whereµisafinitenon-negativeBorelmeasureonRn. Definition 3.3 A function f() C[0,+ ) is said to be radial positive definite function of the class Φ , n n N,iff( )ispositivedefini·te∈onRn,i.e∞.,iff( ) Φ(Rn). ∈ |·| |·| ∈ AcharacterizationoftheclassΦ isgivenbythefollowingSchoenbergtheorem[30,31](seealso[2,Theo- n rem5.4.2]). Theorem3.4 Functionf()belongstotheclassΦ ifandonlyif n · + ∞ f(t)= Ω (st)dµ(s), t 0, (3.2) n ≥ Z0 whereµisanon-negativefiniteBorelmeasureon[0, ),and ∞ n 2 n−22 ∞ t2 p Γ n Ωn(t)=Γ 2 t Jn−22(t)= −4 p!Γ n2+p , (3.3) (cid:16) (cid:17) (cid:18) (cid:19) Xp=0(cid:18) (cid:19) (cid:0)2 (cid:1) (cid:0) (cid:1) Ω (x)= ei(u,x)dν (u), x Rn. (3.4) n n | | ∈ ZSn Hereν istheBorelmeasureuniformlydistributedovertheunitsphereS centeredattheoriginandν (S )=1. n n n n Remark3.5 Itisnotdifficulttoshowthatforanyn NthestrictinclusionΦ Φ takesplace. Indeed, n+1 n ∈ ⊂ itisknown[18],[34,Theorem5],[35,Example1]that(1 t)δ Φ ifandonlyifδ n+1. EarlierAskey[6] −| | + ∈ n ≥ 2 andTrigub[32]consideredthecaseofnaturalδandprovedthenecessityforoddn. Ontheotherhand,thestrictinclusionΦ Φ followsfromanotherexample. Namely,Re(e zt) Φ n+1 n − n ifandonlyif argz π/(2n), z C(see[34⊂,Theorem3]).ThereforeΩ Φ ,butΩ Φ ,n N∈. n n n n+1 | |≤ ∈ ∈ 6∈ ∈ OurcomplementtotheSchoenbergtheoremreadsasfollows. Theorem3.6 Iff() Φ ,n 2,andf() conston[0,+ ),thenthefunctionf( )isstrictlypositive n definiteonRn. · ∈ ≥ · 6≡ ∞ |·| Westartwiththefollowingauxiliarylemmaandpresenttwodifferentproofs. Lemma 3.7 LetSr(y)beasphereofradiusr inRn centeredaty andn 2, letalsoX = x m bea subsetofRnsuchthatnx =x asp=j andξ = ξ m C. If ≥ { k}k=1 p 6 j 6 { k}k=1 ⊂ m ξ ei(u,xp) =0, forall u Sr(y), (3.5) p ∈ n p=1 X thenξ =0forp 1,..,m . p ∈{ } Copyrightlinewillbeprovidedbythepublisher 6 N.Goloshchapova,M.Malamud,andV.Zastavnyi:SpectraltheoryoftheSchro¨dingeroperatorswithpointinteractions Thefirstproof. Withoutlossofgeneralitywemayassumethaty = 0andr = 1. Letalsofordefiniteness ξ = 0. For m = 1 the statement is obvious. Put m 2. Denote max x = R > 0. Let e n be 1 6 ≥ 1 p m| p| 0 { j}j=1 thestandardorthogonalbasisinRn. We mayassumethatx = R e .≤L≤etP betheorthogonalprojectoronto 1 0 1 span e ,e . Then Px = r (cosϕ e +sinϕ e ) with 0 r = Px x R , 0 ϕ < 2π. 1 2 p p p 1 p 2 p p p 0 p { } ≤ | | ≤ | | ≤ ≤ Assumethatr = r = ... = r = R andr < R asp > m (ifm < m). ThenPx = x , 1 p m. 1 2 m 0 p 0 ′ ′ p p ′ ′ ≤ ≤ Evidently,wemayalso assumethat0 = ϕ < ϕ < ... < ϕ < 2π. Putin(3.5)u = cosϕe +sinϕe 1 2 m 1 2 S1(0), ϕ R.Thereforetheequality(3.5)takestheform ′ ∈ n ∈ m ξ exp(ir cos(ϕ ϕ ))=0, ϕ R. (3.6) p p p − ∈ p=1 X It is well known that generating function for the Bessel functions admits the following representation [15, chapter19, 3] § ea2(z−z−1) = ∞ Jk(a)zk, z =0, a C. (3.7) 6 ∈ k= X−∞ Puttingin(3.7)z = iei(ϕ−ϕp) anda = rp, p 1,..,m ,wearriveatthefollowingexpansionintoFourier ∈ { } seriesforthefunctionsf (ϕ)=exp(ir cos(ϕ ϕ )) p p p − ∞ exp(irpcos(ϕ ϕp))= J(rp)ike−ikϕpeikϕ. (3.8) − k= X−∞ Itiseasilyseenthatfrom(3.6)and(3.8)followstheequality m ∞ ξ exp( ikϕ )J (r )ik eikϕ =0. p p k p " − # k= p=1 X−∞ X Therefore m ξ exp( ikϕ )J (r )=0, k N. (3.9) p p k p − ∈ p=1 X UsingthefollowingexpansionintoseriesforJ (x)([27,Section2]) k J (x)= x k ∞ x2 p 1 , k 2 − 4 p!Γ(k+p+1) (cid:0) (cid:1) Xp=0(cid:16) (cid:17) wegetk!2kJ (x)=xk[1+a (x)],where k k a (x) (k+1) 1 exp x2 1 , x R, k N. | k |≤ − 4 − ∈ ∈ h (cid:16) (cid:17) i Multiplyingtheequality(3.9)byk!2kR0−k,weobtain m′ m ξpexp(−ikϕp)[1+ak(R0)]=− ξpexp(−ikϕp)(rpR0−1)k[1+ak(rp)], p=1 p=m+1 X X′ whereright-handsideequals0ifm′ =m. Ifm′ <m,thenrpR0−1 <1asp>m′. Thereby, m′ lim ξ exp( ikϕ )=0. (3.10) p p k − →∞p=1 X Copyrightlinewillbeprovidedbythepublisher mnheaderwillbeprovidedbythepublisher 7 Since arithmeticmeansofthe sequencein (3.10) convergesto ξ (ϕ = 0), thenξ = 0. Thus, the theoremis 1 1 1 proved. The second proof. As in the first proof, we reduce considerations to investigation of equality (3.6). By uniquenesstheoremforanalyticfunctions,equality(3.6)remainsvalidforanyz C ∈ m ξ exp(ir cos(z ϕ ))=0, z =x+iy C. (3.11) p p p − ∈ p=1 X Since,byEulerformula,cos(z ϕp)=(ei(z−ϕp)+e−i(z−ϕp))/2,wehave − r exp(irpcos(z ϕp)) =exp( p Im(ei(z−ϕp)+e−i(z−ϕp)))=exp(rpshysin(x ϕp)). | − | − 2 − Denoteψ (z)=arg(exp(ir cos(z ϕ ))) [0,2π).Thus,by(3.11), p p p − ∈ m ξ [exp(r shysin(x ϕ ))]eiψp(z) =0. (3.12) p p p − p=1 X Multiplying(3.12)byexp( R shy),wearriveat 0 − m′ m ξ [exp(R shy(sin(x ϕ ) 1))]eiψp(z)+ ξ [exp(shy(r sin(x ϕ ) R ))]eiψp(z) =0. p 0 p p p p 0 − − − − Xp=1 p=Xm′+1 (3.13) Settingx=ϕ + π in(3.13)andpassingtothelimitasy + ,weobtainξ =0. 1 2 → ∞ 1 Remark 3.8 The first proof of Lemma 3.7 belongs to Viktor Zastavnyi. Chronologically it was obtained earlierthenthesecondproofproposedbytheothertwoauthors. Remark3.9 ItmightbeeasilyshownthatLemma3.7isnotvalidforanymanifoldinRn. Belowwegivethe explanatoryexample. Itisobviousthatanyhyperplaneπ in Rn, n 2, whichdoesnotcontaintheorigin,is a ≥ givenby π = u Rn : (u,a)=1, where a Rn, a=0 . a { ∈ ∈ 6 } Thenonsuchhyperplanetheexpression1+exp(i(u,πa))isidenticallyzero. Thus,foranyfinitesetofhyper- planeswiththeabovepropertythereexistsasetofpointsy Rn,y =0,k 1,..,q suchthat k k ∈ 6 ∈{ } q m q 0 1+ei(u,πyk) = ξ ei(u,xp), u π . ≡ p ∈ yk kY=1(cid:16) (cid:17) Xp=1 k[=1 Herem 2,ξ >0, p 1,..,m andX = x m isasubsetofRnsuchthatx =x asp=j. ≥ p ∈{ } { p}p=1 p 6 j 6 NowwearereadytoprovethecomplementofTheorem3.4. Belowwepresenttwoslightlydifferentproofs. ThefirstproofofTheorem3.6. Letµbenon-negativefiniteBorelmeasureon[0,+ )fromtherepresen- ∞ tation(3.2)forthefunctionf. Itisobviousthatµ((0,+ ))>0(otherwise,f(t) f(0)). LetX = x m Rn andξ = ξ m Cbes∞ubsetssuchthatx = x ≡asp = j and m ξ > 0. { k}k=1 ⊂ { k}k=1 ⊂ p 6 j 6 k=1| k| FromLemma3.7withy =0,r =1itfollowsthat P m 2 ξ ei(u,sxk) dν (u)>0 forany s>0, k n ZSn(cid:12)(cid:12)kX=1 (cid:12)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Copyrightlinewillbeprovidedbythepublisher (cid:12) (cid:12) 8 N.Goloshchapova,M.Malamud,andV.Zastavnyi:SpectraltheoryoftheSchro¨dingeroperatorswithpointinteractions whereν isthemeasurefromrepresentation(3.4). Sinceµ((0,+ ))>0,weget n ∞ m + m 2 ξ ξ f(x x )= ∞ ξ ei(u,sxk) dν (u) dµ(s)>0. kX,j=1 k j | k− j| Z0 ZSn(cid:12)(cid:12)Xk=1 k (cid:12)(cid:12) n  (cid:12) (cid:12)  (cid:12) (cid:12)  Thus,thetheoremisproved. (cid:12) (cid:12) Thesecondproof.ByTheorem3.2,wehave f(x)= ei(u,x)dµ(u), x Rn, | | ZRn ∈ where µ is non-negativefinite Borel measure on Rn. It is easily seen that suppµ is a radial set, i.e., if x 0 ∈ suppµ, thenthesupportcontainssphereSr(0)ofradiusr = x 0 centeredattheorigin. Iff(t) f(0), n | 0| ≥ 6≡ thensuppµcontainsasphereSr(0). n Letf(t) const, m N, andthe set X = x m Rn is suchthatx = x as k = j. Considerthe followingqu6≡adraticformi∈nCm { k}k=1 ⊂ k 6 j 6 m m 2 Q(ξ):= ξ ξ f(x x )= ξ ei(u,xk) dµ(u) 0, ξ = ξ m C. kX,j=1 k j | k− j| ZRn(cid:12)(cid:12)Xk=1 k (cid:12)(cid:12) ≥ { k}k=1 ⊂ (cid:12) (cid:12) (cid:12) (cid:12) If Q(ξ) = 0, then the functiong(u) := mk=1ξkei((cid:12)u,xk) equals0(cid:12)on suppµ and thereforeequals0 on Snr(0). Finally,Lemma3.7yieldsthatξ =0, k 1,..,m . k P∈{ } Definition3.10 Afunctionf() C[0, ) C (0,+ )iscalledcompletelymonotonicfunctionon[0, ) ∞ oftheclassM[0, )iftheinequa·lit∈y( 1)∞kf(k∩)(t) 0ho∞ldsforallk Z andt>0. ∞ + ∞ − ≥ ∈ Schoenbergnoted in [30,31] that the function f() Φ if and only if f(√) M[0, ). Thus, it is n · ∈ n N · ∈ ∞ easilyimpliedbySchoenbergtheoremthatf() M[0, )T∈yieldsf() Φ . n · ∈ ∞ · ∈n N ∈ T Corollary 3.11 [33, Theorem 7.14] If f() M[0, ) and f() const on [0,+ ), then the function f( )isstrictlypositivedefiniteonRnforan·yn∈ N. ∞ · 6≡ ∞ |·| ∈ Remark 3.12 (i) In [33, Lemma 6.7] assertion of Lemma 3.7 was proven provided that the equality (3.5) holdsonacertainopensubsetofR. (ii)Theorem3.6wasformulatedin[33,Theorem6.18]and[14,Theorem3.7]undertheadditionalcondition tn 1f(t) L1[0, ). − ∈ ∞ Example3.13 Letuspresentsomeexamplesofstrictlypositivefunctions. (1)UsingtheequalityΓ(2p)= 22p−1Γ(p)Γ(p+1/2),weobtain √π Ω (t)=cost, Ω (t)=J (t), Ω (t)=sint/t. 1 2 0 3 ByTheorem3.6,thefunctionsΩ (sx)arestrictlypositivedefiniteonRnforanys>0andn 2. n | | ≥ (2)Itiseasilyseenthatthefunctionse tand(1 e t)/t= 1e tsdsarecompletelymonotonicon[0,+ ). − − − 0 − ∞ Thus,byCorollary3.11,thefunctionse x and(1 e x)/x arestrictlypositivedefiniteonRnforalln N. −| | − −| | | |R ∈ 4 Three-dimensional Schro¨dinger operator withpointinteractions 4.1 BoundarytripletandWeylfunction FirstwedefineaboundarytripletfortheoperatorH . Denoter := x x , x R3,letalso√ standsfor the ∗ j j | − | ∈ · branchofthecorrespondingmultifunctiondefinedonC R bythecondition√1=1. + \ Copyrightlinewillbeprovidedbythepublisher mnheaderwillbeprovidedbythepublisher 9 Proposition4.1 LetH betheminimalSchro¨dingeroperatordefinedby(1.2)andletξ := ξ m , ξ := ξ m Cm.Thenthefollowingassertionshold 0 { 0j}j=1 1 { 1j}j=1 ∈ (i) The operator H is closed and symmetric. The deficiency indices of H are n (H) = m. The defect subspaceN :=N (H)is ± z z m ei√zrj N = c : c C, j 1,...,m , z C [0, ). (4.1) z j j { 4πr ∈ ∈{ }} ∈ \ ∞ j j=1 X (ii)TheadjointoperatorH isgivenby ∗ dom(H∗)=f = m ξ0je−rrj +ξ1je−rj +fH : ξ0,ξ1 ∈Cm, fH ∈dom(H), (4.2) j  Xj=1(cid:0) (cid:1)  H∗f = mξ0je−rj +ξ1j(e−rj 2e−rj) ∆fH.  (4.3) − r − r − j j j=1 X(cid:0) (cid:1) (iii)AtotalityΠ= ,Γ ,Γ ,where 0 1 {H } =Cm, Γ f := Γ f m =4π lim f(x)x x m =4π ξ m , (4.4) H 0 { 0j }j=1 {x→xj | − j|}j=1 { 0j}j=1 Γ f := Γ f m = lim f(x) ξ0j m , (4.5) 1 { 1j }j=1 {x→xj − |x−xj| }j=1 (cid:0) (cid:1) formsaboundarytripletforH . ∗ (iv)TheoperatorH =H ↾ker(Γ )(=H )coincideswiththefreeHamiltonian, 0 ∗ 0 0∗ H = ∆, dom(H )=dom( ∆)=W2,2(R3). 0 0 − − Proof. (i)Thestatement(i)ofProposition4.1iswell-known. Itwasobtainedintheclassicalbook[3](see Theorem1.1.2). (ii)Clearly,e−rj W2,2(R3) dom(H∗)forj 1,..,m . ∈ ⊂ ∈{ } Since the function e−|x| is strictly positive definite on R3 (Example 3.13), the matrix (e−|xk−xj|)mk,j=1 is positivedefinite. Thereforethefunctionse−rj, j 1,..,m arelinearlyindependent. Considertheoperator ∈ { } H definedby e H :=H∗ ↾dom(H), dom(H)=dom(H)+˙ span{e−rj}mj=1 =W2,2(R3). (4.6) Sincedom(He) = dom( ∆) =eW2,2(R3)eandbothoperatorsH and ∆areproperextensionsofH,wehave − − H = ∆andtheoperatorH isself-adjoint. − Further,seincethefunctions e−rj N , j 1,..,m areelinearlyindependent,and,bythesecondJ.von Neeumannformula, e 4πrj ∈ −1 ∈ { } dim(dom(H∗)/dom(H))=n (H)=m, ± representation(4.2)isproved. e (iii)Letf,g dom(H ). By(4.2),wehave ∗ ∈ f = m fk+fH, fk =ξ0k e−rk +ξ1ke−rk, g = m gk+gH, gk =η0k e−rk +η1ke−rk, r r k k k=1 k=1 X X wheref ,g dom(H),andξ , ξ ,η , η C, k 1,..,m . H H 0k 1k 0k 1k ∈ ∈ ∈{ } Copyrightlinewillbeprovidedbythepublisher 10 N.Goloshchapova,M.Malamud,andV.Zastavnyi:SpectraltheoryoftheSchro¨dingeroperatorswithpointinteractions Applying(4.4)-(4.5)tof,g dom(H ),weobtain ∗ ∈ m Γ0f =4π{ξ0j}mj=1, Γ1f =−ξ0j + ξ0kex−|xj−xxk| + m ξ1ke−|xj−xk| , j k  Xk6=j | − | kX=1 j=1 m Γ0g =4π{η0j}mj=1, Γ1g =−η0j + η0kex−|xj−xxk| + m η1ke−|xj−xk| . j k  Xk6=j | − | Xk=1 j=1 (4.7)   Itiseasilyseenthat (H∗f,g) (f,H∗g)= m ξ0jH∗ e−rj ,η1ke−rk ξ0j e−rj,η1kH∗(e−rk) − r − r k,j=1(cid:18)(cid:18) (cid:18) j (cid:19) (cid:19) (cid:18) j (cid:19) X + ξ1jH∗(e−rj),η0k e−rk ξ1je−rj,η0kH∗ e−rk . r − r (cid:18) k (cid:19) (cid:18) (cid:18) k (cid:19)(cid:19)(cid:19) UsingthesecondGreenformula,weget H∗ e−rj ,e−rk e−rj,H∗(e−rk) r − r (cid:18) (cid:18) j (cid:19) (cid:19) (cid:18) j (cid:19) = lim ∆ e−rj e−rkdx+ e−rj∆(e−rk)dx r→∞(cid:18) Z − (cid:18) rj (cid:19) Z rj (cid:19) Br(xj)\B1(xj) Br(xj)\B1(xj) r r = lim ∂ e−rj e−rk + e−rj ∂(e−rk) ds r→∞ Z (cid:18)−∂n(cid:18) rj (cid:19) rj ∂n (cid:19) Sr(xj) + lim ∂ e−rj e−rk e−rj ∂(e−rk) ds= 4πe−|xj−xk|, (4.8) r→∞ Z (cid:18)∂n(cid:18) rj (cid:19) − rj ∂n (cid:19) − S1(xj) r wherenstandsfortheexteriornormalvectortoS (x )andS (x ),respectively. r j 1 j r Indeed,noticingthat ∂ e−rj = e−rj(1+ 1), wecaneasilyshowthatthefirstintegralintheformula ∂n rj − rj rj (4.8)tendstozeroasrtends(cid:16)toinfi(cid:17)nity.Further, lim ∂ e−rj e−rkds= lim ∂ e−|y| e−|y+xj−xk|ds r→∞ Z ∂n(cid:18) rj (cid:19) r→∞ Z ∂n(cid:18) |y| (cid:19) S1(xj) S1(0) r r 4π = lim e−1/rr(1+r)e−|y∗+xj−xk| = 4π lim e−|y∗+xj−xk| = 4πe−|xj−xk|, −r→∞(cid:20)r2 (cid:21) − y∗→0 − and e−rj ∂(e−rk) e−|y|∂(e−|y+xj−xk|) lim ds= lim ds r→∞ Z rj ∂n r→∞ Z |y| ∂n S1(xj) S1(0) r r =rl→im∞(cid:20)4rπ2e−1/rr∂(e−|y∂+nxj−xk|)|y=y∗∗(cid:21)= 0, y∗ ∈S1r(0), y∗∗ ∈Sr1(0). Copyrightlinewillbeprovidedbythepublisher

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.