MathematischeNachrichten,24January2017 Radial positive definite functions and spectral theory of the Schro¨dinger operators with point interactions N.Goloshchapova1, ,M.Malamud1, ,andV.Zastavnyi2, ∗ ∗∗ ∗∗∗ 1 R.Luxemburgstr.74, 83114Donetsk,Ukraine 7 2 Univesitetskajastr.24, 83001Donetsk,Ukraine 1 0 2 Keywords Schro¨dingeroperator,pointinteractions,self-adjointextension,spectrum,positivedefinitefunction n MSC(2000) 47A10,47B25 a J Dedicatedtothe75thanniversaryofEduardTsekanovskii. 3 WecompletetheclassicalSchoenbergrepresentationtheoremforradialpositivedefinitefunctions. Weapply 2 thisresulttostudy spectral propertiesof self-adjoint realizations of two-and three-dimensional Schro¨dinger operatorswithpointinteractionsonafiniteset.Inparticular,weprovethatanyrealizationhaspurelyabsolutely ] P continuousnon-negativespectrum. S Copyrightlinewillbeprovidedbythepublisher . h t a m 1 Introduction [ An importanttopic in quantummechanicsis the spectral theoryof Schro¨dingeroperatorson the Hilbertspace 1 L2(Rd), d 1,2,3 ,withpotentialssupportedonadiscrete(finiteorcountable)setofpointsofRd. Thereis v ∈ { } anextensiveliteratureonsuchoperators(see[1,3–5,8,10,20,22,26,28]andreferencestherein).Thefirstmath- 6 3 ematicalproblemistoassociateaself-adjointoperator(Hamiltonian)onL2(Rd)withthedifferentialexpression 4 6 m 0 Ld := ∆+ αjδ( xj), αj R, m N. (1.1) − ·− ∈ ∈ 1. Xj=1 0 Thereareatleasttwonaturalwaystoassociateself-adjointoperatorHX,αwiththefollowingdifferentialexpres- 7 sioninL2(R1) 1 : d2 m v L := + α δ( x ), m N i 1 −dx2 j ·− j ∈ X j=1 X r for any fixed set α := α m R. The first one is based on the quadratic forms method. Another way to a { j}j=1 ⊂ introduce local interactionson X := x m R is to consider maximal operator correspondingto L and { j}j=1 ⊂ 1 imposeboundaryconditionsatx , j 1,..,m (see[3]),i.e., j ∈{ } dom(H )= f W2,2(R X) W1,2(R):f (x +) f (x )=α f(x ) . X,α ′ j ′ j j j { ∈ \ ∩ − − } Incontrasttoone-dimensionalcase,thedifferentialexpression(1.1)doesnotdefineanoperatorinL2(Rd), d 2,bymeansofthequadraticformssincethelinearfunctionalδ : f f(x)isnotcontinuousinW1,2(Rd) x ≥ → ford 2.However,itisstillpossibletoapplytheextensiontheoryapproach.Namely,F.BerezinandL.Faddeev ≥ intheirpioneeringpaper[8]proposedtoconsider(1.1)(withm = 1andd = 3)intheframeworkofextension theory.TheyassociatedwithL thefamilyofallself-adjointextensionsofthefollowingsymmetricoperator d H := ∆, dom(H):= f W2,2(Rd):f(x )=0, j 1,..,m , m N. (1.2) j − ∈ ∈{ } ∈ ∗ Correspondingauthor E-mail:nataliia@i(cid:8)me.usp.br, (cid:9) ∗∗ E-mail:[email protected]. ∗∗∗ E-mail:[email protected]. Copyrightlinewillbeprovidedbythepublisher 2 N.Goloshchapova,M.Malamud,andV.Zastavnyi:SpectraltheoryoftheSchro¨dingeroperatorswithpointinteractions It is wellknownthatH is closed non-negativesymmetricoperatorwith equaldeficiencyindicesn (H) = m (see[3]). In[3],theauthorsproposedtoassociatewiththeHamiltonian(1.1)certainm-parametricfa±milyH(d) X,α describinglocalpointinteractions. Theyparameterizedthefamilyintermsoftheresolvents. Thelatterenabled theauthorstoobtainanexplicitdescriptionofthespectrumforanyoperatorfromthefamilyH(d) . X,α Intherecentpublications[5,10,20], boundarytripletsandthecorrespondingWeylfunctionstechnique(see [12,19] and also Section 2.1) was involved to investigate multi-dimensionalSchro¨dinger operators with point interactions(thecasesd 2,3 ). Inthepresentpaper,weapplyboundarytripletsapproachtoparametrizeall ∈ { } self-adjointextensionsofH.Besides,usingWeylfunctionstechnique,weinvestigatetheirspectra.Moreover,we substantiallyinvolvethetheoryofradialpositivedefinitefunctions[2,chapterV]inourapproach. Inparticular, weemploystrictpositivedefiniteness(seeDefinition3.1)ofthefunctionssinss|·| andtheBesselfunctionsJ0(s|·|) with anys > 0 onR3 andR2, respectively,toprovepureabsolutecontinu|i·t|yofnon-negativespectrumofany self-adjointrealizationofL . ForthispurposewecompletetheclassicalSchoenbergtheorem[31]regardingthe d integralrepresentationofradialpositivedefinitefunctions. The paper is organized as follows. Section 2 is introductory. It contains definitions of a boundary triplet and the corresponding Weyl function [12,19] and also facts about the Weyl functions [9,23]. In Section 3, wecompleteSchoenbergtheorembyestablishingstrictpositivedefinitenessofanynon-constantradialpositive definitefunctiononRn, n 2.InSections4and5,weinvestigate3D-and2D-Schro¨dingeroperatorswithpoint ≥ interactions,respectively. Namely,inSubsection4.1(resp.,5.1),wedefineboundarytripletΠ = ,Γ ,Γ forH andcomputethe 0 1 ∗ {H } correspondingWeylfunction. ItappearstobeclosetothatcontainedinKrein’sresolventformulaforthefamily H(d) in[3]. Inparticular,fortheproofofthesurjectivityofthemappingΓ = (Γ ,Γ ) weemploythestrict X,α 0 1 ⊤ positivedefinitenessofthefunctione onRnforany n N. −|·| ∈ Subsections4.2and 5.2 are devotedto the spectralanalysis of the self-adjointrealizationsof L . To inves- d tigate the absolutely continuousspectrum we apply technique elaborated in [9,23]. For this purpose we need invertibilityofthematrices m δ + sin(√x|xk−xj|) and J (√xx x ) m , x R , kj √xx x +δ 0 | j − k| j,k=1 ∈ + (cid:18) | k− j| kj(cid:19)j,k=1 (cid:0) (cid:1) whichweextractfromthestrictpositivedefinitenessofthefunctions sinss|·| andJ0(s|·|), s>0,onR3andR2, respectively.WeemphasizethatintheproofofTheorems4.7and5.7ou|r·|complementtoSchoenbergtheoremis usedinfullgenerality.Indeed,itfollowsfromtheintegralrepresentation(3.2)thatthestrictpositivedefiniteness of sinss|·| andJ0(s|·|)foralls > 0yieldsthestrictpositivedefinitenessofanyradialpositivedefinitefunction f onR|·|3andR2,respectively. Finally, descriptionof the non-negativeself-adjointextensionsof H (d = 3) is providedin Subsection 4.3. For suitable choice of a boundarytripletΠ strongresolventlimit of the correspondingWeyl functionM(x) at x = 0appearstobepositivedefinitematrixinaviewofstrictpositivedefinitenessofthefunction 1−e−|·| on Rnforany n N. e |·|f ∈ Notation.LetHand denoteseparableHilbertspaces;[H, ]denotesthespaceofboundedlinearoperators H H from H to , [ ] := [ , ]; the set of closedoperatorsin is denotedby ( ). Let A be a linear operator H H H H H C H inaHilbertspaceH. Inwhatfollowsdomain,kernel,andrangeofAaredenotedbydom(A),ker(A),ran(A), respectively;σ(A)andρ(A)denotethespectrumandtheresolventsetofA;N denotesthedefectsubspaceof z A; C[0, )denotestheBanachspaceoffunctionscontinuousandboundedon[0, ). ∞ ∞ 2 Extension theory ofsymmetricoperators 2.1 Boundarytripletsandproperextensions In this subsection, we recall basic notions and facts of the theory of boundary triplets (we refer the reader to [12,13,19]foradetailedexposition).InwhatfollowsAalwaysdenotesaclosedsymmetricoperatorinseparable HilbertspaceHwithequaldeficiencyindicesn (A)=n (A) . + − ≤∞ Copyrightlinewillbeprovidedbythepublisher mnheaderwillbeprovidedbythepublisher 3 Definition2.1 [19] AtotalityΠ = ,Γ ,Γ iscalledaboundarytripletfortheadjointoperatorA ofA 0 1 ∗ {H } if isanauxiliaryHilbertspaceandΓ ,Γ : dom(A ) arelinearmappingssuchthat 0 1 ∗ H →H (i)thefollowingabstractsecondGreenidentityholds (A∗f,g)H (f,A∗g)H =(Γ1f,Γ0g) (Γ0f,Γ1g) , f,g dom(A∗); (2.1) − H− H ∈ (ii)themappingΓ:=(Γ ,Γ ) :dom(A ) issurjective. 0 1 ⊤ ∗ →H⊕H WithaboundarytripletΠ= ,Γ ,Γ forA oneassociatestwoself-adjointextensionsofAdefinedby 0 1 ∗ {H } A0 :=A∗↾ker(Γ0) and A1 :=A∗↾ker(Γ1). Definition2.2 (i)AclosedextensionAofAiscalledproperifA A A . Thesetofallproperextensions ∗ ⊆ ⊆ ofAisdenotedbyExt . A (ii)TwoproperextensionsA andA eofAarecalleddisjointifdome(A ) dom(A )=dom(A). 1 2 1 2 ∩ Remark2.3 (i)ForanysymmetricoperatorAwithn (A) = n (A), aboundarytripletΠ = ,Γ ,Γ + 0 1 forA existsandisnotunique[1e9].Itiseknownalsothatdim =n −(A)aendkerΓ=keer(Γ ,Γ ) {=Hdom(A)}. ∗ 0 1 ⊤ H ± (ii)Moreover,foreachself-adjointextensionAofA thereexistsa boundarytripletΠ = ,Γ ,Γ such 0 1 {H } thatA=A ↾ker(Γ )=:A . ∗ 0 0 (iii) For each boundarytriplet Π = ,Γ ,Γe for A and each bounded self-adjoint operator B in a 0 1 ∗ {H } H tripleetΠB ={H,ΓB0,ΓB1}withΓB1 :=Γ0andΓB0 :=BΓ0−Γ1isalsoaboundarytripletforA∗. AroleofaboundarytripletforA intheextensiontheoryissimilartothatofcoordinatesystemintheanalytic ∗ geometry.Namely,itallowsonetoparameterizethesetExt bymeansoflinearrelationsin inplaceofJ.von A H Neumannformulas.Toexplainthiswerecallthefollowingdefinitions. Definition2.4 (i)AclosedlinearrelationΘin isaclosedsubspaceof . H H⊕H (ii)AlinearrelationΘissymmetricif(g ,f ) (f ,g )=0forall f ,g , f ,g Θ. 1 2 1 2 1 1 2 2 − { } { }∈ (iii)TheadjointrelationΘ isdefinedby ∗ Θ∗ = k,k′ :(h′,k)=(h,k′) forall h,h′ Θ . {{ } { }∈ } (iv)AclosedlinearrelationΘiscalledself-adjointifbothΘandΘ aremaximalsymmetric,i.e.,theydonot ∗ admitsymmetricextensions. For the symmetric relation Θ Θ in the multivalued part mul(Θ) is the orthogonal complement of ∗ ⊆ H dom(Θ)in . Setting := dom(Θ)and = mul(Θ),oneverifiesthatΘcanberewrittenasthedirect op H H H∞ orthogonalsumofaself-adjointoperatorΘ inthesubspace anda“pure”relationΘ = 0,f : f op op ′ ′ H ∞ { } ∈ mul(Θ) inthesubspace . H∞ (cid:8) Proposition2.5 [12,19]LetΠ= ,Γ ,Γ beaboundarytripletforA . Thenthemapping (cid:9) {H 0 1} ∗ Ext A:=A Θ:=Γ(dom(A))= Γ f,Γ f : f dom(A) (2.2) A Θ 0 1 ∋ → {{ } ∈ } establishesabijectivecorrespondencebetweenthesetofallclosedproperextensionsExt ofAandthesetof e e e A allclosedlinearrelations ( )in . Furthermore,thefollowingassertionshold. C H H (i)Theequality(A ) =A holdsforanyΘ ( ). Θ ∗ Θ ∗ ∈C H (ii)TheextensionA ien(2.2)issymmetric(self-adjoint)ifandonlyif Θissymmetric(self-adjoint). More- Θ over,n (A )=n (Θ). e Θ ± ± (iii)If,inaddition,theclosedextensionsA andA aredisjoint,then(2.2)takestheform Θ 0 A =A =A ↾dom(A ), dom(A )=dom(A )↾ker Γ BΓ , B ( ). Θ B ∗ B B ∗ 1 0 − ∈C H (cid:0) (cid:1) 2.2 Weylfunction,γ-fieldandspectraofproperextensions ItisknownthatWeylfunctionisanimportanttoolinthespectraltheoryofsingularSturm-Liouvilleoperators.In [12,13]theconceptofWeylfunctionwasgeneralizedtoanarbitrarysymmetricoperatorAwithequaldeficiency indices. InthissubsectionwerecallbasicfactsaboutWeylfunctions. Copyrightlinewillbeprovidedbythepublisher 4 N.Goloshchapova,M.Malamud,andV.Zastavnyi:SpectraltheoryoftheSchro¨dingeroperatorswithpointinteractions Definition2.6 [12]LetΠ= ,Γ ,Γ beaboundarytripletforA .TheoperatorvaluedfunctionM(): 0 1 ∗ {H } · ρ(A ) [ ]definedby 0 → H M(z)Γ f =Γ f , f N , z ρ(A ), (2.3) 0 z 1 z z z 0 ∈ ∈ iscalledtheWeylfunction,correspondingtothetripletΠ. ThedefinitionoftheWeylfunctioniscorrectandtheWeylfunctionM()isNevanlinnaorR-function. · Inthefollowingwewillbeconcernedwithasimplesymmetricoperators.RecallthatasymmetricoperatorA issaidtobesimpleifthereisnonontrivialsubspacewhichreducesittoself-adjointoperator. Thespectrumandtheresolventsetoftheclosed(notnecessarilyself-adjoint)extensionsofsimplesymmetric operatorAcanbedescribedwiththehelpofthefunctionM(). Namely,thefollowingpropositionholds. · Proposition2.7 LetAbeadenselydefinedsimple symmetricoperatorinH, Θ ( ), A Ext , and Θ A ∈ C H ∈ z ρ(A ). Thenthefollowingequivalenceshold. 0 ∈ (i)z ρ(A ) 0 ρ(Θ M(z)); e Θ ∈ ⇐⇒ ∈ − (ii) z σ (A ) 0 σ (Θ M(z)), τ p, c, r ; τ Θ τ ∈ ⇐⇒ ∈ − ∈{ } (iii)f ker(A z) Γ f ker(Θ M(z)) and dimker(A z)=dimker(Θ M(z)). z Θ 0 z Θ ∈ − ⇐⇒ ∈ − − − The followingpropositiongivesus quantitativecharacterizationof the negativespectrumof self-adjointex- tensionsoftheoperatorA. Proposition 2.8 [12] Let A be a densely defined non-negative symmetric operator in H, and let Π = ,Γ ,Γ be a boundarytriplet for A . Let also M() be the correspondingWeyl function and A = A , 0 1 ∗ 0 F {H } · whereA istheFriedrichsextensionofA. Thenthefollowingassertionshold. F (i) The strong resolvent limit M(0) := s R limM(x) exists and is self-adjoint linear relation semi- − − x 0 boundedfrombelow. ↑ (ii) If, in addition, M(0) [ ], then the number of negative squares of A = A equals the number of ∈ H Θ ∗Θ negativesquaresoftherelationΘ M(0),i.e.,κ (A )=κ (Θ M(0)). Θ − − − − Inparticular,theself-adjointextensionA ofAisnon-negativeifandonlyifthelinearrelationΘ M(0)is Θ − non-negative. Denote M(x+i0):=s limM(x+iy), d (x):=rank(Im(M(x+i0))), M −y 0 ↓ M (z):=(M(z)h,h), Ω (M ):= x R: 0<Im(M (x+i0))<+ , z C , h , h ac h h + { ∈ ∞} ∈ ∈H whereM (x+i0):=lim (M(x+iy)h,h). SinceIm(M (z))>0, z C ,thelimitM (x+i0)existsand h y 0 h + h isfinitefora.e. x R. ↓ ∈ ∈ Tostatethenextpropositionweneedaconceptoftheabsolutelycontinuousclosurecl (δ)ofaBorelsubset ac δ Rintroducedin[9]and[16]. Wereferto[16,23]forthedefinitionandbasicproperties. ⊂ Proposition2.9 [9,23]LetAbeasimpledenselydefinedclosedsymmetricoperatorwithequaldeficiency indices in separable Hilbert space H. Let Π = ,Γ ,Γ be a boundary triplet for A and M() the cor- 0 1 ∗ {H } · responding Weyl function. Assume also that τ = h N , 1 N is a total set in .Let also { k}k=1 ≤ ≤ ∞ H A =A ↾ker(Γ BΓ ),withB =B ( ). Thenthefollowingassertionshold. B ∗ 1 0 ∗ − ∈C H (i)TheoperatorA hasnosingularcontinuousspectrumwithintheinterval(a,b)ifforeachk 1,2,..,N 0 ∈{ } theset(a,b) Ω (M )iscountable. (ii)Ifthe\limiatcM(xhk+i0)existsfora.e.x R,thenσ (A )=cl (supp(d (x))). ac 0 ac M (iii)ForanyBorelsubset Rtheabsolu∈telycontinuouspartsA Eac( )andA Eac ( )oftheoperators D ⊂ 0 A0 D B AB D A E ( )andA E ( )areunitarilyequivalentifandonlyif d (x)=d (x)fora.e. x . 0 A0 D B AB D M MB ∈D 3 Positivedefinite functions. Complement oftheSchoenberg theorem Let(u,v)=u v +...+u v beascalarproductoftwovectorsu=(u ,...,u )andv =(v ,...,v )from 1 1 n n 1 n 1 n Rn, n N, and let u = (u,u) be Euclidean norm. Recall some basic facts and notions of the theory of ∈ | | positivedefinitefunctions[2]. p Copyrightlinewillbeprovidedbythepublisher mnheaderwillbeprovidedbythepublisher 5 Definition3.1 [2,33](i)Functiong() : Rn CissaidtobepositivedefiniteonRn andisreferredtothe classΦ(Rn)ifitiscontinuousat0andfor·anyfin→itesubsetsX := x m Rnandξ := ξ m C, m Nthefollowinginequalityholds { k}k=1 ⊂ { k}k=1 ⊂ ∈ m ξ ξ g(x x ) 0. (3.1) k j k− j ≥ k,j=1 X (ii)Moreover,g() issaid tobe strictlypositiveonRn ifthe inequality(3.1) isstrictforanysubsetofdistinct pointsX = x m· Rnandforanysubsetξ = ξ m Csatisfyingcondition m ξ >0. { k}k=1 ⊂ { k}k=1 ⊂ k=1| k| Clearly, positivedefinitenessofthe functiong()isequivalentto thenon-negativedefinitenessofthematrix G(X) = (g )m with g = g(x x ) for· any subset X = x m RnP, while its strict positive kj k,j=1 kj k − j { k}k=1 ⊂ definiteness is equivalent to (strict) positive definiteness of the matrix G(X) for any subset of distinct points X = x m Rn. Th{efko}llko=w1in⊂gclassicalBochnertheoremgivesthedescriptionoftheclassΦ(Rn). Theorem3.2 [11]Afunctiong()ispositivedefiniteonRnifandonlyif · g(x)= ei(u,x)dµ(u), RZn whereµisafinitenon-negativeBorelmeasureonRn. Definition 3.3 A function f() C[0,+ ) is said to be radial positive definite function of the class Φ , n n N,iff( )ispositivedefini·te∈onRn,i.e∞.,iff( ) Φ(Rn). ∈ |·| |·| ∈ AcharacterizationoftheclassΦ isgivenbythefollowingSchoenbergtheorem[30,31](seealso[2,Theo- n rem5.4.2]). Theorem3.4 Functionf()belongstotheclassΦ ifandonlyif n · + ∞ f(t)= Ω (st)dµ(s), t 0, (3.2) n ≥ Z0 whereµisanon-negativefiniteBorelmeasureon[0, ),and ∞ n 2 n−22 ∞ t2 p Γ n Ωn(t)=Γ 2 t Jn−22(t)= −4 p!Γ n2+p , (3.3) (cid:16) (cid:17) (cid:18) (cid:19) Xp=0(cid:18) (cid:19) (cid:0)2 (cid:1) (cid:0) (cid:1) Ω (x)= ei(u,x)dν (u), x Rn. (3.4) n n | | ∈ ZSn Hereν istheBorelmeasureuniformlydistributedovertheunitsphereS centeredattheoriginandν (S )=1. n n n n Remark3.5 Itisnotdifficulttoshowthatforanyn NthestrictinclusionΦ Φ takesplace. Indeed, n+1 n ∈ ⊂ itisknown[18],[34,Theorem5],[35,Example1]that(1 t)δ Φ ifandonlyifδ n+1. EarlierAskey[6] −| | + ∈ n ≥ 2 andTrigub[32]consideredthecaseofnaturalδandprovedthenecessityforoddn. Ontheotherhand,thestrictinclusionΦ Φ followsfromanotherexample. Namely,Re(e zt) Φ n+1 n − n ifandonlyif argz π/(2n), z C(see[34⊂,Theorem3]).ThereforeΩ Φ ,butΩ Φ ,n N∈. n n n n+1 | |≤ ∈ ∈ 6∈ ∈ OurcomplementtotheSchoenbergtheoremreadsasfollows. Theorem3.6 Iff() Φ ,n 2,andf() conston[0,+ ),thenthefunctionf( )isstrictlypositive n definiteonRn. · ∈ ≥ · 6≡ ∞ |·| Westartwiththefollowingauxiliarylemmaandpresenttwodifferentproofs. Lemma 3.7 LetSr(y)beasphereofradiusr inRn centeredaty andn 2, letalsoX = x m bea subsetofRnsuchthatnx =x asp=j andξ = ξ m C. If ≥ { k}k=1 p 6 j 6 { k}k=1 ⊂ m ξ ei(u,xp) =0, forall u Sr(y), (3.5) p ∈ n p=1 X thenξ =0forp 1,..,m . p ∈{ } Copyrightlinewillbeprovidedbythepublisher 6 N.Goloshchapova,M.Malamud,andV.Zastavnyi:SpectraltheoryoftheSchro¨dingeroperatorswithpointinteractions Thefirstproof. Withoutlossofgeneralitywemayassumethaty = 0andr = 1. Letalsofordefiniteness ξ = 0. For m = 1 the statement is obvious. Put m 2. Denote max x = R > 0. Let e n be 1 6 ≥ 1 p m| p| 0 { j}j=1 thestandardorthogonalbasisinRn. We mayassumethatx = R e .≤L≤etP betheorthogonalprojectoronto 1 0 1 span e ,e . Then Px = r (cosϕ e +sinϕ e ) with 0 r = Px x R , 0 ϕ < 2π. 1 2 p p p 1 p 2 p p p 0 p { } ≤ | | ≤ | | ≤ ≤ Assumethatr = r = ... = r = R andr < R asp > m (ifm < m). ThenPx = x , 1 p m. 1 2 m 0 p 0 ′ ′ p p ′ ′ ≤ ≤ Evidently,wemayalso assumethat0 = ϕ < ϕ < ... < ϕ < 2π. Putin(3.5)u = cosϕe +sinϕe 1 2 m 1 2 S1(0), ϕ R.Thereforetheequality(3.5)takestheform ′ ∈ n ∈ m ξ exp(ir cos(ϕ ϕ ))=0, ϕ R. (3.6) p p p − ∈ p=1 X It is well known that generating function for the Bessel functions admits the following representation [15, chapter19, 3] § ea2(z−z−1) = ∞ Jk(a)zk, z =0, a C. (3.7) 6 ∈ k= X−∞ Puttingin(3.7)z = iei(ϕ−ϕp) anda = rp, p 1,..,m ,wearriveatthefollowingexpansionintoFourier ∈ { } seriesforthefunctionsf (ϕ)=exp(ir cos(ϕ ϕ )) p p p − ∞ exp(irpcos(ϕ ϕp))= J(rp)ike−ikϕpeikϕ. (3.8) − k= X−∞ Itiseasilyseenthatfrom(3.6)and(3.8)followstheequality m ∞ ξ exp( ikϕ )J (r )ik eikϕ =0. p p k p " − # k= p=1 X−∞ X Therefore m ξ exp( ikϕ )J (r )=0, k N. (3.9) p p k p − ∈ p=1 X UsingthefollowingexpansionintoseriesforJ (x)([27,Section2]) k J (x)= x k ∞ x2 p 1 , k 2 − 4 p!Γ(k+p+1) (cid:0) (cid:1) Xp=0(cid:16) (cid:17) wegetk!2kJ (x)=xk[1+a (x)],where k k a (x) (k+1) 1 exp x2 1 , x R, k N. | k |≤ − 4 − ∈ ∈ h (cid:16) (cid:17) i Multiplyingtheequality(3.9)byk!2kR0−k,weobtain m′ m ξpexp(−ikϕp)[1+ak(R0)]=− ξpexp(−ikϕp)(rpR0−1)k[1+ak(rp)], p=1 p=m+1 X X′ whereright-handsideequals0ifm′ =m. Ifm′ <m,thenrpR0−1 <1asp>m′. Thereby, m′ lim ξ exp( ikϕ )=0. (3.10) p p k − →∞p=1 X Copyrightlinewillbeprovidedbythepublisher mnheaderwillbeprovidedbythepublisher 7 Since arithmeticmeansofthe sequencein (3.10) convergesto ξ (ϕ = 0), thenξ = 0. Thus, the theoremis 1 1 1 proved. The second proof. As in the first proof, we reduce considerations to investigation of equality (3.6). By uniquenesstheoremforanalyticfunctions,equality(3.6)remainsvalidforanyz C ∈ m ξ exp(ir cos(z ϕ ))=0, z =x+iy C. (3.11) p p p − ∈ p=1 X Since,byEulerformula,cos(z ϕp)=(ei(z−ϕp)+e−i(z−ϕp))/2,wehave − r exp(irpcos(z ϕp)) =exp( p Im(ei(z−ϕp)+e−i(z−ϕp)))=exp(rpshysin(x ϕp)). | − | − 2 − Denoteψ (z)=arg(exp(ir cos(z ϕ ))) [0,2π).Thus,by(3.11), p p p − ∈ m ξ [exp(r shysin(x ϕ ))]eiψp(z) =0. (3.12) p p p − p=1 X Multiplying(3.12)byexp( R shy),wearriveat 0 − m′ m ξ [exp(R shy(sin(x ϕ ) 1))]eiψp(z)+ ξ [exp(shy(r sin(x ϕ ) R ))]eiψp(z) =0. p 0 p p p p 0 − − − − Xp=1 p=Xm′+1 (3.13) Settingx=ϕ + π in(3.13)andpassingtothelimitasy + ,weobtainξ =0. 1 2 → ∞ 1 Remark 3.8 The first proof of Lemma 3.7 belongs to Viktor Zastavnyi. Chronologically it was obtained earlierthenthesecondproofproposedbytheothertwoauthors. Remark3.9 ItmightbeeasilyshownthatLemma3.7isnotvalidforanymanifoldinRn. Belowwegivethe explanatoryexample. Itisobviousthatanyhyperplaneπ in Rn, n 2, whichdoesnotcontaintheorigin,is a ≥ givenby π = u Rn : (u,a)=1, where a Rn, a=0 . a { ∈ ∈ 6 } Thenonsuchhyperplanetheexpression1+exp(i(u,πa))isidenticallyzero. Thus,foranyfinitesetofhyper- planeswiththeabovepropertythereexistsasetofpointsy Rn,y =0,k 1,..,q suchthat k k ∈ 6 ∈{ } q m q 0 1+ei(u,πyk) = ξ ei(u,xp), u π . ≡ p ∈ yk kY=1(cid:16) (cid:17) Xp=1 k[=1 Herem 2,ξ >0, p 1,..,m andX = x m isasubsetofRnsuchthatx =x asp=j. ≥ p ∈{ } { p}p=1 p 6 j 6 NowwearereadytoprovethecomplementofTheorem3.4. Belowwepresenttwoslightlydifferentproofs. ThefirstproofofTheorem3.6. Letµbenon-negativefiniteBorelmeasureon[0,+ )fromtherepresen- ∞ tation(3.2)forthefunctionf. Itisobviousthatµ((0,+ ))>0(otherwise,f(t) f(0)). LetX = x m Rn andξ = ξ m Cbes∞ubsetssuchthatx = x ≡asp = j and m ξ > 0. { k}k=1 ⊂ { k}k=1 ⊂ p 6 j 6 k=1| k| FromLemma3.7withy =0,r =1itfollowsthat P m 2 ξ ei(u,sxk) dν (u)>0 forany s>0, k n ZSn(cid:12)(cid:12)kX=1 (cid:12)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Copyrightlinewillbeprovidedbythepublisher (cid:12) (cid:12) 8 N.Goloshchapova,M.Malamud,andV.Zastavnyi:SpectraltheoryoftheSchro¨dingeroperatorswithpointinteractions whereν isthemeasurefromrepresentation(3.4). Sinceµ((0,+ ))>0,weget n ∞ m + m 2 ξ ξ f(x x )= ∞ ξ ei(u,sxk) dν (u) dµ(s)>0. kX,j=1 k j | k− j| Z0 ZSn(cid:12)(cid:12)Xk=1 k (cid:12)(cid:12) n (cid:12) (cid:12) (cid:12) (cid:12) Thus,thetheoremisproved. (cid:12) (cid:12) Thesecondproof.ByTheorem3.2,wehave f(x)= ei(u,x)dµ(u), x Rn, | | ZRn ∈ where µ is non-negativefinite Borel measure on Rn. It is easily seen that suppµ is a radial set, i.e., if x 0 ∈ suppµ, thenthesupportcontainssphereSr(0)ofradiusr = x 0 centeredattheorigin. Iff(t) f(0), n | 0| ≥ 6≡ thensuppµcontainsasphereSr(0). n Letf(t) const, m N, andthe set X = x m Rn is suchthatx = x as k = j. Considerthe followingqu6≡adraticformi∈nCm { k}k=1 ⊂ k 6 j 6 m m 2 Q(ξ):= ξ ξ f(x x )= ξ ei(u,xk) dµ(u) 0, ξ = ξ m C. kX,j=1 k j | k− j| ZRn(cid:12)(cid:12)Xk=1 k (cid:12)(cid:12) ≥ { k}k=1 ⊂ (cid:12) (cid:12) (cid:12) (cid:12) If Q(ξ) = 0, then the functiong(u) := mk=1ξkei((cid:12)u,xk) equals0(cid:12)on suppµ and thereforeequals0 on Snr(0). Finally,Lemma3.7yieldsthatξ =0, k 1,..,m . k P∈{ } Definition3.10 Afunctionf() C[0, ) C (0,+ )iscalledcompletelymonotonicfunctionon[0, ) ∞ oftheclassM[0, )iftheinequa·lit∈y( 1)∞kf(k∩)(t) 0ho∞ldsforallk Z andt>0. ∞ + ∞ − ≥ ∈ Schoenbergnoted in [30,31] that the function f() Φ if and only if f(√) M[0, ). Thus, it is n · ∈ n N · ∈ ∞ easilyimpliedbySchoenbergtheoremthatf() M[0, )T∈yieldsf() Φ . n · ∈ ∞ · ∈n N ∈ T Corollary 3.11 [33, Theorem 7.14] If f() M[0, ) and f() const on [0,+ ), then the function f( )isstrictlypositivedefiniteonRnforan·yn∈ N. ∞ · 6≡ ∞ |·| ∈ Remark 3.12 (i) In [33, Lemma 6.7] assertion of Lemma 3.7 was proven provided that the equality (3.5) holdsonacertainopensubsetofR. (ii)Theorem3.6wasformulatedin[33,Theorem6.18]and[14,Theorem3.7]undertheadditionalcondition tn 1f(t) L1[0, ). − ∈ ∞ Example3.13 Letuspresentsomeexamplesofstrictlypositivefunctions. (1)UsingtheequalityΓ(2p)= 22p−1Γ(p)Γ(p+1/2),weobtain √π Ω (t)=cost, Ω (t)=J (t), Ω (t)=sint/t. 1 2 0 3 ByTheorem3.6,thefunctionsΩ (sx)arestrictlypositivedefiniteonRnforanys>0andn 2. n | | ≥ (2)Itiseasilyseenthatthefunctionse tand(1 e t)/t= 1e tsdsarecompletelymonotonicon[0,+ ). − − − 0 − ∞ Thus,byCorollary3.11,thefunctionse x and(1 e x)/x arestrictlypositivedefiniteonRnforalln N. −| | − −| | | |R ∈ 4 Three-dimensional Schro¨dinger operator withpointinteractions 4.1 BoundarytripletandWeylfunction FirstwedefineaboundarytripletfortheoperatorH . Denoter := x x , x R3,letalso√ standsfor the ∗ j j | − | ∈ · branchofthecorrespondingmultifunctiondefinedonC R bythecondition√1=1. + \ Copyrightlinewillbeprovidedbythepublisher mnheaderwillbeprovidedbythepublisher 9 Proposition4.1 LetH betheminimalSchro¨dingeroperatordefinedby(1.2)andletξ := ξ m , ξ := ξ m Cm.Thenthefollowingassertionshold 0 { 0j}j=1 1 { 1j}j=1 ∈ (i) The operator H is closed and symmetric. The deficiency indices of H are n (H) = m. The defect subspaceN :=N (H)is ± z z m ei√zrj N = c : c C, j 1,...,m , z C [0, ). (4.1) z j j { 4πr ∈ ∈{ }} ∈ \ ∞ j j=1 X (ii)TheadjointoperatorH isgivenby ∗ dom(H∗)=f = m ξ0je−rrj +ξ1je−rj +fH : ξ0,ξ1 ∈Cm, fH ∈dom(H), (4.2) j Xj=1(cid:0) (cid:1) H∗f = mξ0je−rj +ξ1j(e−rj 2e−rj) ∆fH. (4.3) − r − r − j j j=1 X(cid:0) (cid:1) (iii)AtotalityΠ= ,Γ ,Γ ,where 0 1 {H } =Cm, Γ f := Γ f m =4π lim f(x)x x m =4π ξ m , (4.4) H 0 { 0j }j=1 {x→xj | − j|}j=1 { 0j}j=1 Γ f := Γ f m = lim f(x) ξ0j m , (4.5) 1 { 1j }j=1 {x→xj − |x−xj| }j=1 (cid:0) (cid:1) formsaboundarytripletforH . ∗ (iv)TheoperatorH =H ↾ker(Γ )(=H )coincideswiththefreeHamiltonian, 0 ∗ 0 0∗ H = ∆, dom(H )=dom( ∆)=W2,2(R3). 0 0 − − Proof. (i)Thestatement(i)ofProposition4.1iswell-known. Itwasobtainedintheclassicalbook[3](see Theorem1.1.2). (ii)Clearly,e−rj W2,2(R3) dom(H∗)forj 1,..,m . ∈ ⊂ ∈{ } Since the function e−|x| is strictly positive definite on R3 (Example 3.13), the matrix (e−|xk−xj|)mk,j=1 is positivedefinite. Thereforethefunctionse−rj, j 1,..,m arelinearlyindependent. Considertheoperator ∈ { } H definedby e H :=H∗ ↾dom(H), dom(H)=dom(H)+˙ span{e−rj}mj=1 =W2,2(R3). (4.6) Sincedom(He) = dom( ∆) =eW2,2(R3)eandbothoperatorsH and ∆areproperextensionsofH,wehave − − H = ∆andtheoperatorH isself-adjoint. − Further,seincethefunctions e−rj N , j 1,..,m areelinearlyindependent,and,bythesecondJ.von Neeumannformula, e 4πrj ∈ −1 ∈ { } dim(dom(H∗)/dom(H))=n (H)=m, ± representation(4.2)isproved. e (iii)Letf,g dom(H ). By(4.2),wehave ∗ ∈ f = m fk+fH, fk =ξ0k e−rk +ξ1ke−rk, g = m gk+gH, gk =η0k e−rk +η1ke−rk, r r k k k=1 k=1 X X wheref ,g dom(H),andξ , ξ ,η , η C, k 1,..,m . H H 0k 1k 0k 1k ∈ ∈ ∈{ } Copyrightlinewillbeprovidedbythepublisher 10 N.Goloshchapova,M.Malamud,andV.Zastavnyi:SpectraltheoryoftheSchro¨dingeroperatorswithpointinteractions Applying(4.4)-(4.5)tof,g dom(H ),weobtain ∗ ∈ m Γ0f =4π{ξ0j}mj=1, Γ1f =−ξ0j + ξ0kex−|xj−xxk| + m ξ1ke−|xj−xk| , j k Xk6=j | − | kX=1 j=1 m Γ0g =4π{η0j}mj=1, Γ1g =−η0j + η0kex−|xj−xxk| + m η1ke−|xj−xk| . j k Xk6=j | − | Xk=1 j=1 (4.7) Itiseasilyseenthat (H∗f,g) (f,H∗g)= m ξ0jH∗ e−rj ,η1ke−rk ξ0j e−rj,η1kH∗(e−rk) − r − r k,j=1(cid:18)(cid:18) (cid:18) j (cid:19) (cid:19) (cid:18) j (cid:19) X + ξ1jH∗(e−rj),η0k e−rk ξ1je−rj,η0kH∗ e−rk . r − r (cid:18) k (cid:19) (cid:18) (cid:18) k (cid:19)(cid:19)(cid:19) UsingthesecondGreenformula,weget H∗ e−rj ,e−rk e−rj,H∗(e−rk) r − r (cid:18) (cid:18) j (cid:19) (cid:19) (cid:18) j (cid:19) = lim ∆ e−rj e−rkdx+ e−rj∆(e−rk)dx r→∞(cid:18) Z − (cid:18) rj (cid:19) Z rj (cid:19) Br(xj)\B1(xj) Br(xj)\B1(xj) r r = lim ∂ e−rj e−rk + e−rj ∂(e−rk) ds r→∞ Z (cid:18)−∂n(cid:18) rj (cid:19) rj ∂n (cid:19) Sr(xj) + lim ∂ e−rj e−rk e−rj ∂(e−rk) ds= 4πe−|xj−xk|, (4.8) r→∞ Z (cid:18)∂n(cid:18) rj (cid:19) − rj ∂n (cid:19) − S1(xj) r wherenstandsfortheexteriornormalvectortoS (x )andS (x ),respectively. r j 1 j r Indeed,noticingthat ∂ e−rj = e−rj(1+ 1), wecaneasilyshowthatthefirstintegralintheformula ∂n rj − rj rj (4.8)tendstozeroasrtends(cid:16)toinfi(cid:17)nity.Further, lim ∂ e−rj e−rkds= lim ∂ e−|y| e−|y+xj−xk|ds r→∞ Z ∂n(cid:18) rj (cid:19) r→∞ Z ∂n(cid:18) |y| (cid:19) S1(xj) S1(0) r r 4π = lim e−1/rr(1+r)e−|y∗+xj−xk| = 4π lim e−|y∗+xj−xk| = 4πe−|xj−xk|, −r→∞(cid:20)r2 (cid:21) − y∗→0 − and e−rj ∂(e−rk) e−|y|∂(e−|y+xj−xk|) lim ds= lim ds r→∞ Z rj ∂n r→∞ Z |y| ∂n S1(xj) S1(0) r r =rl→im∞(cid:20)4rπ2e−1/rr∂(e−|y∂+nxj−xk|)|y=y∗∗(cid:21)= 0, y∗ ∈S1r(0), y∗∗ ∈Sr1(0). Copyrightlinewillbeprovidedbythepublisher