ebook img

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation PDF

373 Pages·2013·4.237 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Radial Basis Function (RBF) Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems Jinkun Liu Radial Basis Function (RBF) Neural Network Control for Mechanical Systems Design, Analysis and Matlab Simulation With 170 figures JinkunLiu DepartmentofIntelligentSystem andControlEngineering SchoolofAutomationScience andElectricalEngineering BeihangUniversity Beijing,China,People’sRepublic TUP ISBN 978-7-302-30255-1 ISBN978-3-642-34815-0 ISBN978-3-642-34816-7(eBook) DOI10.1007/978-3-642-34816-7 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012955859 #TsinghuaUniversityPress,BeijingandSpringer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerpts inconnectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeing enteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplication ofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthe Publisher’s location, in its current version, and permission for use must always be obtained from Springer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter. ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Recentyearshaveseenarapiddevelopmentofneuralnetworkcontroltechniques andtheirsuccessfulapplications.Numeroustheoreticalstudiesandactualindustrial implementationsdemonstratethatartificialneuralnetworkisagoodcandidatefor functionapproximationandcontrolsystemdesigninsolvingthecontrolproblems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications withinthefieldsofadaptivecontrol,neuralcontrol,andfuzzysystems,havebeen publishedinvariousbooks,journals,andconferenceproceedings.Inspiteofthese remarkable advances in neural control field, due to the complexity of nonlinear systems, the present research on adaptive neural control is still focused on the developmentoffundamentalmethodologies. The advantage of neural networks is that a suitable number of neural network functions can model any (sufficiently smooth) continuous nonlinear function in acompactset,andthemodelingerrorisbecomingsmallerwithanincreaseofneural networkfunctions.Itisevenpossibletomodeldiscontinuousnonlinearitiesassuming therightchoiceofdiscontinuousneuralnetworkfunctions.Thus,anadaptiveneural network approach is most suitable in an environment where system dynamics are significantlychanging,highlynonlinear,andinprinciplenotcompletelyknown. Thisbookismotivatedbytheneedforsystematicdesignapproachesforstable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design method and Matlab simulation of stable adaptive RBF (Radial Basis Function) neuralcontrolstrategies. Itisourgoaltoaccomplishtheseobjectives: • Offer a catalog of implementable neural network control design methods for engineeringapplications. • Provide advanced neural network controller design methods and their stability analysismethods. • Foreachneuralnetworkcontrolalgorithm,weofferitssimulationexampleand Matlabprogram. v vi Preface Thisbookprovidesthereaderwithathoroughgroundingintheneuralnetwork control system design. Typical neural network controllers’ designs are verified using Matlab simulation. In this book, concrete case studies, which present the results of neural network controller implementations, are used to illustrate the successfulapplicationofthetheory. The book is structured as follows. The book starts with a brief introduction of adaptive control and neural network control in Chap. 1, RBF neural network algorithmanddesignremarksaregiveninChap.2,RBFneuralnetworkcontroller design based on gradient descent algorithm is introduced in Chap. 3, since only local optimization can be guaranteed by using the gradient descent method, and several adaptive RBF neural network controller designs are given based on Lyapunov analysis from Chaps. 4, 5, 6, 7 and 8, which include simple adaptive RBF neural network controller, neural network sliding mode controller, adaptive RBF controller based on global approximation, adaptive robust RBF controller based on local approximation, and backstepping adaptive controller with RBF. In Chap. 9, digital RBF neural network controller design is given. Two kinds of discrete neural network controllers are introduced in Chap. 10. At last, a neural networkadaptiveobserverisrecommendedandaspeedlessslidingmodecontroller designisgiveninChap.11. IwouldliketothankProf.S.S.Geforhisfruitfulsuggestions.Iwishtothank myfamilyfortheirsupportandencouragement. In this book, all the control algorithms and their programs are described sepa- ratelyandclassifiedbythechaptername,whichcanberunsuccessfullyinMatlab 7.5.0.342versionorinothermoreadvancedversions.Inaddition,alltheprograms can be downloaded via http://ljk.buaa.edu.cn/. If you have questions about algorithmsandsimulationprograms,[email protected]. Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 NeuralNetworkControl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 WhyNeuralNetworkControl?. . . . . . . . . . . . . . . . . . . . 1 1.1.2 ReviewofNeuralNetworkControl. . . . . . . . . . . . . . . . 2 1.1.3 ReviewofRBFAdaptiveControl. . . . . . . . . . . . . . . . . . 3 1.2 ReviewofRBFNeuralNetwork. . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 RBFAdaptiveControlforRobotManipulators. . . . . . . . . . . . . 4 1.4 SFunctionDesignforControlSystem. . . . . . . . . . . . . . . . . . . . 5 1.4.1 SFunctionIntroduction. . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.2 BasicParametersinSFunction. . . . . . . . . . . . . . . . . . . 5 1.4.3 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 AnExampleofaSimpleAdaptiveControlSystem. . . . . . . . . . . 7 1.5.1 SystemDescription. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5.2 AdaptiveControlLawDesign. . . . . . . . . . . . . . . . . . . . 7 1.5.3 SimulationExample. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 RBFNeuralNetworkDesignandSimulation. . . . . . . . . . . . . . . . . 19 2.1 RBFNeuralNetworkDesignandSimulation. . . . . . . . . . . . . . . 19 2.1.1 RBFAlgorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 RBFDesignExamplewithMatlabSimulation. . . . . . . . 20 2.2 RBFNeuralNetworkApproximationBasedonGradient DescentMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.1 RBFNeuralNetworkApproximation. . . . . . . . . . . . . . . 22 2.2.2 SimulationExample. . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 EffectofGaussianFunctionParametersonRBF Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 EffectofHiddenNetsNumberonRBFApproximation. . . . . . . 28 vii viii Contents 2.5 RBFNeuralNetworkTrainingforSystemModeling. . . . . . . . . 33 2.5.1 RBFNeuralNetworkTraining. . . . . . . . . . . . . . . . . . . . 33 2.5.2 SimulationExample. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6 RBFNeuralNetworkApproximation. . . . . .. . . . . . .. . . . . . .. 36 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3 RBFNeuralNetworkControlBasedonGradient DescentAlgorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1 SupervisoryControlBasedonRBFNeuralNetwork.. . . .. . . .. 55 3.1.1 RBFSupervisoryControl. . . . . . . . . . . . . . . . . . . . . . . . 55 3.1.2 SimulationExample. . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2 RBFNN-BasedModelReferenceAdaptiveControl. . . . . . . . . . 58 3.2.1 ControllerDesign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.2 SimulationExample. . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3 RBFSelf-AdjustControl.. . . . . . . . .. . . . . . . . .. . . . . . . . .. . 61 3.3.1 SystemDescription. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.2 RBFControllerDesign. . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.3 SimulationExample. . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4 AdaptiveRBFNeuralNetworkControl. . . . . . . . . . . . . . . . . . . . . 71 4.1 AdaptiveControlBasedonNeuralApproximation. . . . . . . . . . . 71 4.1.1 ProblemDescription. . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1.2 AdaptiveRBFControllerDesign. . . . . . . . . . . . . . . . . . 72 4.1.3 SimulationExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 AdaptiveControlBasedonNeuralApproximation withUnknownParameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2.1 ProblemDescription. . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2.2 AdaptiveControllerDesign. . . . . . . . . . . . . . . . . . . . . . 79 4.2.3 SimulationExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3 ADirectMethodforRobustAdaptiveControlbyRBF. . . . . . . . 83 4.3.1 SystemDescription. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3.2 DesiredFeedbackControlandFunction Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.3.3 ControllerDesignandPerformanceAnalysis. . . . . . . . . 87 4.3.4 SimulationExample. . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5 NeuralNetworkSlidingModeControl. . . . . . . . . . . . . . . . . . . . . . 113 5.1 TypicalSlidingModeControllerDesign. . . . . . . . . . . . . . . . . . 114 5.2 SlidingModeControlBasedonRBFforSecond-Order SISONonlinearSystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.2.1 ProblemDescription. . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Contents ix 5.2.2 SlidingModeControlBasedonRBF forUnknownfð(cid:2)Þ. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. 117 5.2.3 SimulationExample. . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.3 SlidingModeControlBasedonRBFforUnknownf((cid:2)) andg((cid:2)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.3.2 SimulationExample. . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6 AdaptiveRBFControlBasedonGlobalApproximation. . . . . . . . 133 6.1 AdaptiveControlwithRBFNeuralNetworkCompensation forRoboticManipulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.1.1 ProblemDescription. . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.1.2 RBFApproximation. . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.3 RBFControllerandAdaptiveLawDesign andAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.1.4 SimulationExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.2 RBFNeuralRobotControllerDesignwithSlidingMode RobustTerm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 6.2.1 ProblemDescription. . . . . . . . . . . . . . . . . . . . . . . . . . . 144 6.2.2 RBFApproximation. . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.3 ControlLawDesignandStabilityAnalysis. . . . . . . . . . . 147 6.2.4 SimulationExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.3 RobustControlBasedonRBFNeuralNetworkwithHJI. . . . . . 153 6.3.1 Foundation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.3.2 ControllerDesignandAnalysis. . . . . . . . . . . . . . . . . . . 153 6.3.3 SimulationExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7 AdaptiveRobustRBFControlBasedonLocalApproximation. . . 193 7.1 RobustControlBasedonNominalModel forRoboticManipulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.1.1 ProblemDescription. . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.1.2 ControllerDesign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 7.1.3 StabilityAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 7.1.4 SimulationExample. . . . . . . . . . . . . . . . . . . . . . . . . . . 196 7.2 AdaptiveRBFControlBasedonLocalModelApproximation forRoboticManipulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 7.2.1 ProblemDescription. . . . . . . . . . . . . . . . . . . . . . . . . . . 197 7.2.2 ControllerDesign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 7.2.3 StabilityAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 7.2.4 SimulationExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . 203 x Contents 7.3 AdaptiveNeuralNetworkControlofRobotManipulators inTaskSpace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 7.3.1 CoordinationTransformationfromTaskSpace toJointSpace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 7.3.2 NeuralNetworkModelingofRobotManipulators. . . . . . 208 7.3.3 ControllerDesign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 7.3.4 SimulationExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 8 BacksteppingControlwithRBF. . . . . . . . . . . . . . . . . . . . . . . . . . . 251 8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 8.2 BacksteppingControlforInvertedPendulum. . . . . . . . . . . . . . . 252 8.2.1 SystemDescription. . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 8.2.2 ControllerDesign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 8.2.3 SimulationExample. . . . . . . . . . . . . . . . . . . . . . . . . . . 254 8.3 BacksteppingControlBasedonRBFforInvertedPendulum. . . . 255 8.3.1 SystemDescription. . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 8.3.2 BacksteppingControllerDesign. . . . . . . . . . . . . . . . . . . 256 8.3.3 AdaptiveLawDesign. . . . . . . . . . . . . . . . . . . . . . . . . . 257 8.3.4 SimulationExample. . . . . . . . . . . . . . . . . . . . . . . . . . . 259 8.4 BacksteppingControlforSingle-LinkFlexibleJointRobot. . . . . 260 8.4.1 SystemDescription. . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 8.4.2 BacksteppingControllerDesign. . . . . . . . . . . . . . . . . . . 262 8.5 AdaptiveBacksteppingControlwithRBFforSingle-Link FlexibleJointRobot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 8.5.1 BacksteppingControllerDesignwithFunction Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 265 8.5.2 BacksteppingControllerDesignwithRBF Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 8.5.3 SimulationExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . 272 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 9 DigitalRBFNeuralNetworkControl. . . . . . . . . . . . . . . . . . . . . . . 293 9.1 AdaptiveRunge–Kutta–MersonMethod. . . . . . . . . . . . . . . . . . 293 9.1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 9.1.2 SimulationExample. . . . . . . . . . . . . . . . . . . . . . . . . . . 295 9.2 DigitalAdaptiveControlforSISOSystem. . . . . . . . . . . . . . . . . 295 9.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 9.2.2 SimulationExample. . . . . . . . . . . . . . . . . . . . . . . . . . . 297 9.3 DigitalAdaptiveRBFControlforTwo-LinkManipulators. . . . . 298 9.3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 9.3.2 SimulationExample. . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.