Springer Series in Information Sciences 25 Editor: Thomas S. Huang Springer Series in Information Sciences Editors: Thomas S. Huang Teuvo Kohonen Manfred R. Schroeder Managing Editor: H. K. V. Lotsch 1 Content-Addressable Memories 16 Radon and Projection 'fransform By T. Kohonen 2nd Edition Based Computer Vision Algorithms, A Pipeline Architecture, and 2 Fast Fonrier 'fransform and Convolution Algorithms Industrial Applications By J. L. C. Sanz, E. B. Hinkle, and A. K. Jain By H. J. Nussbaumer 2nd Edition 17 Kalman Filtering 3 Pitch Determination of Speech Signals Algorithms and Devices By W. Hess with Real-TIme Applications By C. K. Chui and G. Chen 2nd Edition 4 Pattern Analysis and Understanding By H. Niemann 2nd Edition 18 Linear Systems and Optimal Control By C. K. Chui and G. Chen 5 Image Sequence Analysis Editor: T. S. Huang 19 Harmony: A Psychoacoustical Approach By R. Parncutt 6 Picture Engineering Editors: King-sun Fu and T. L. Kunii 20 Group-Theoretical Methods in Image Understanding 7 Number Theory in Science By Ken-ichi Kanatani and Communication With Applications in Cryptography, Physics, Digital 21 Linear Prediction Theory Information, Computing, and Self A Mathematical Basis Similarity By M. R. Schroeder for Adaptive Systems 2nd Edition By P. Strobach 8 Self-Organization 22 Psychoacoustics Facts and Models and Associative Memory By E. Zwicker and H. Fast! By T. Kohonen 3rd Edition 23 Digital Image Restoration 9 Digital Picture Processing Editor: A. K. Katsaggelos An Introduction By L. P. Yaroslavsky 24 Parallel Algorithms 10 Probability, Statistical Optics, in Computational Science and Data Testing By D. W. Heermann and A. N. Burkitt A Problem Solving Approach 25 Radar Array Processing By B. R. Frieden 2nd Edition Editors: S. Haykin, J. Litva, 11 Physical and Biological Processing and T. J. Shepherd of Images Editors: O. J. Braddick 26 Signal Processing and Systems Theory and A. C. Sleigh Selected Topics 12 Multiresolution Image Processing By C. K. Chui and G. Chen and Analysis Editor: A. Rosenfeld 27 3D Dynamic Scene Analysis 13 VLSI for Pattern Recognition and A Stereo Based Approach Image Processing Editor: King-sun Fu By Z. Zhang and O. Faugeras 14 Mathematics of Kalman-Bucy Filtering 28 Theory of Reconstruction By P. A. Ruymgaart and T. T. Soong from Image Motion 2nd Edition By S. Maybank 15 Fundamentals 29 Motion and Structure of Electronic Imaging Systems from Image Sequences Some Aspects of Image Processing By J. Weng, T.S. Huang, By W. F. Schreiber 3rd Edition andN. Ahuja S. Haykin J. Litva T. J. Shepherd (Eds.) Radar Array Processing With Contributions by s. Haykin T. V. Ho J. Litva J. G . McWhirter A. Nehorai U. Nickel B.Ottersten T. J. Shepherd B. D. Steinberg P. Stoica M. Viberg Z. Zhu With 84 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Professor Simon Haykin Dr. John Litva Communications Research Laboratory, McMaster University, U80 Main Street West, Hamilton, Ontario, Canada, LSS 4Kl Dr. Terence J. Shepherd Royal Signals and Radar Establishment, St. Andrew's Road, Malvern, Worcs. WR14 3PS, UK Series Editors: Professor Thomas S. Huang Department of Electrical Engineering and Coordinated Science Laboratory, University of Illinois, Urbana, IL 61801, USA Professor Teuvo Kohonen Laboratory of Computer and Information Sciences, Helsinki University of Technology, SF-02150 Espoo 15, Finland Professor Dr. Manfred R. Schroeder Drittes Physikalisches Institut, Universitat Gottingen, Biirgerstrasse 42-44, W-3400 Gottingen, Fed. Rep. of Germany Managing Editor: Dr.-Ing. Helmut K. V. Lotsch Springer-Verlag, TIergartenstrasse 17, W-6900 Heidelberg, Fed. Rep. of Germany ISBN-13 :978-3-642-77349-5 e-ISBN -978-3-642-7734 7-1 DOl: 10.1007/978-3-642-77347-1 Library of Congress Cataloging-in-Publication Data. Radar array processing 1 S. Haykin, J. Litva, T.J. Shepherd (eds.); with contributions by S. Haykin ... let al.]. p. cm. - (Springer series in information sciences; 25) Includes bibliographical references and index. ISBN 3-540-55224-3 (alk. paper). - ISBN 0-387-55224-3 (alk. paper: U.S.) 1. Radar-Antennas. 2. Signal processing-Digital techniques. I. Haykin, Simon S., 1931-. II. Litva, J. (John), 1937-. III. Shepherd, T.J. (Terence J.), 1952-. IV. Series. TK6590.A6R33 1993 621.3848'3-<lc20 92-10763 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is per mitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1993 . Softcover reprint of the hardcover 1s t edition 1993 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regula tions and therefore free for general use. 54/3140-5 4 3 2 1 0 - Printed on acid-free paper Preface The objective of this book is to present various modem techniques and methods for processing radar signals received by an array of antenna elements. Recent years have seen a rapid growth in the technology of hardware for manipulating data in numerical or digital form, and the application of such enabling techno.: logy to radar signals has provided some of the principal motivation for its development. Seen in the context of digital signal processing, the output of radar signals from an antenna array receiver may be regarded as a matrix of numbers, with each column ofthe matrix deriving from an individual antenna element; the processing of the signals may then be regarded as the extraction of information from the matrix. With the data in this form, it becomes possible to enlist the full power of modem sophisticated computational algorithms, many of which are contained in this volume. The techniques described in the following chapters are almost universally relevant to all applications for which arrays of detectors are employed; thus, besides being of interest to researchers and students in the radar community, the book should also appeal to those in related fields such as sonar, seIsmology, acoustics, radio astronomy, and possibly even some areas of optical astronomy. Ontario, Canada Simon Haykin Great Malvern, UK John Litva November 1992 Terry Shepherd Contents 1. Overview By S. Haykin, J. Litva, and T.J. Shepherd. . . . . . . . . . . . . 1 Part I Detection and Estimation 2. Radar Detection Using Array Processing By Z. Zhu and S. Haykin (With 2 Figures). . . . . . . . . . . . . . . . . . . . 3 2.1 Observation Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Coherent Radar Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Signal and Noise Model. . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Detection of Targets with Known Directions . . . . . . . . . 7 2.2.3 Detection of Targets with Unknown Directions. . . . . . . 13 2.3 Noncoherent Radar Detection. . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Signal and Noise Model. . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 Detection of Targets with Known Directions . . . . . . . . . 17 2.3.3 Detection of Targets with Unknown Directions: Deterministic Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.4 Detection of Targets with Unknown Directions: Gaussian Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4 Passive Radar Detection .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4.1 Signal and Noise Model. . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4.2 Detection of Emitters with Known Directions . . . . . . . . 33 2.4.3 Detection of Emitters with Unknown Directions: Deterministic Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.4 Detection of Emitters with Unknown Directions: Gaussian Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5 Discussion........................................ 43 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Additional References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3. Radar Target Parameter Estimation with Array Antennas By U. Nickel (With 18 Figures) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1 Radar Parameter Estimation Problem. . . . . . . . . . . . . . . . . . . 47 3.1.1 Range and Angle Estimation. . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 Frequency and Power Estimation. . . . . . . . . . . . . . . . . . 51 3.2 Angle Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 VIII Contents 3.2.1 Monopulse Estimation (Single Target Estimation) . . . . . 52 3.2.2 Covariance Matrix Estimation . . . . . . . . . . . . . . . . . . . . 56 3.2.3 Linear Prediction Methods. . . . . . . . . . . . . . . . . . . . . . . 58 3.2.4 Capon-Pisarenko-Type Methods . . . . . . . . . . . . . . . . . . 62 3.2.5 Signal Subspace Methods. . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.6 Parametric Target Model Fitting . . . . . . . . . . . . . . . . . . 73 3.2.7 Aspects ofImplementation . . . . . . . . . . . . . . . . . . . . . . . 83 3.3 Frequency Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.3.1 Doppler Filter Bank. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.3.2 Superresolution Methods. . . . . . . . . . . . . . . . . . . . . . . . . 87 3.4 Range, Amplitude and Power Estimation . . . . . . . . . . . . . . . . 90 3.4.1 Conventional Range Estimation. . . . . . . . . . . . . . . . . . . 90 3.4.2 Superresolution in Range. . . . . . . . . . . . . . . . . . . . . . . . 91 3.4.3 Amplitude and Power Estimation. . . . . . . . . . . . . . . . . . 93 3.5 Summary......................................... 94 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4. Exact and Large Sample Maximum Likelihood Techniques for Parameter Estimation and Detection in Array Processing By B. Ottersten, M. Viberg, P. Stoica, and A. Nehorai (With 7 Figures) 99 4.1 Background....................................... 100 4.2 Chapter Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.3 Sensor Array Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3.1 Narrowband Data Model. . . . . . . . . . . . . . . . . . . . . . . . 103 4.3.2 Parametric Data Model. . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3.3 Assumptions and Problem Formulation. . . . . . . . . . . . . 106 4.3.4 Parameter Identifiability. . . . . . . . . . . . . . . . . . . . . . . . . 107 4.4 Exact Maximum Likelihood Estimation. . . . . . . . . . . . . . . . . 108 4.4.1 Stochastic Maximum Likelihood Method. . . . . . . . . . . . 109 4.4.2 Deterministic Maximum Likelihood Method . . . . . . . . . 111 4.4.3 Bounds of Estimation Accuracy . . . . . . . . . . . . . . . . . . . 112 4.4.4 Asymptotic Properties of Maximum Likelihood Estimates 115 4.4.5 Order Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.5 Large Sample Maximum Likelihood Approximations. . . . . . . 118 4.5.1 Subspace Based Approach. . . . . . . . . . . . . . . . . . . . . . . . 118 4.5.2 Relation Between Subspace Formulations. . . . . . . . . . . . 121 4.5.3 Relation to Maximum Likelihood Estimation. . . . . . . . . 123 4.6 Calculating the Estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.6.1 Newton-Type Search Algorithms. . . . . . . . . . . . . . . . . . . 126 4.6.2 Gradients and Approximate Hessians. . . . . . . . . . . . . . . 127 4.6.3 Uniform Linear Arrays. . . . . . . . . . . . . . . . . . . . . . . . . . 129 4.6.4 Practical Aspects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4.7 Detection of Coherent/Noncoherent Signals. . . . . . . . . . . . . . 133 4.7.1 Generalized Likelihood Ratio Test Based Detection. . . . 133 4.7.2 Subspace Based Detection. . . . . . . . . . . . . . . . . . . . . . . . 135 Contents IX 4.8 Numerical Examples and Simulations .. : . . . . . . . . . . . . . . . . 137 4.9 Conclusions....................................... 143 Appendix 4.A Differentiation of the Projection Matrix. . . . . . . . . . 144 Appendix 4.B Asymptotic Distribution of the Weighted Subspace Fitting Criterion. . . . . . . . . . . . . . . . . . . . 144 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Part II Systolic Arrays 5. Systolic Adaptive Beamforming By T.J. Shepherd and J.G. McWhirter (With 27 Figures).. . . . .. .. 153 5.1 Adaptive Antenna Arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.2 Systolic and Wavefront Arrays. . . . . . . . . . . . . . . . . . . . . . . . . 155 5.3 Canonical Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.3.1 Canonical Configuration. . . . . . . . . . . . . . . . . . . . . . . . . 158 5.3.2 Least-Squares Formulation. . . . . . . . . . . . . . . . . . . . . . . 160 5.4 QR Decomposition by Givens Rotations. . . . . . . . . . . . . . . . . 163 5.4.1 QR Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.4.2 Givens Rotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 5.4.3 Systolic Array Implementation. . . . . . . . . . . . . . . . . . . . 166 5.4.4 Square-Root-Free Algorithm. . . . . . . . . . . . . . . . . . . . . . 169 5.4.5 Sensitivity to Arithmetic Precision . . . . . . . . . . . . . . . . . 173 5.5 Direct Residual Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 5.5.1 Definition of Residuals. . . . . . . . . . . . . . . . . . . . . . . . . . 175 5.5.2 Properties of Rotation Matrix Q(n). . . . . . . . . . . . . . . . . 175 5.5.3 A Posteriori Residual Extraction. . . . . . . . . . . . . . . . . . . 178 5.5.4 A Priori Residual Extraction. . . . . . . . . . . . . . . . . . . . . . 179 5.6 Weight Freezing and Flushing. . . . . . . . . . . . . . . . . . . . . . . . . 180 5.6.1 Basic Concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 5.6.2 Frozen Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 5.6.3 Serial Weight Flushing. . . . . . . . . . . . . . . . . . . . . . . . . . 185 5.6.4 Further Insights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 5.7 Linear Constraint Pre-Processor. . . . . . . . . . . . . . . . . . . . . . . 189 5.7.1 Single Constraint Pre-Processor. . . . . . . . . . . . . . . . . . . 190 5.7.2 Multiple Constraint Pre-Processor. . . . . . . . . . . . . . . . . 193 5.7.3 Generalized Sidelobe Canceller. . . . . . . . . . . . . . . . . . . . 196 5.8 Minimum Variance Distortionless Response Beamforming . . . 200 5.8.1 Schreiber's Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.8.2 Systolic Array Implementation . . . . . . . . . . . . . . . . . . . . 204 5.8.3 Square-Root-Free Minimum Variance Distortionless Response Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 5.9 Adaptive Antenna Processor Test-Bed. . . . . . . . . . . . . . . . . . . 210 5.9.1 Wavefront Array Processor. . . . . . . . . . . . . . . . . . . . . . . 211 X Contents 5.10 Further Developments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 5.10.1 Parallel Weight Extraction. . . . . . . . . . . . . . . . . . . . . . 215 5.10.2 QR-with-Feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 5.10.3 Structures for Broad-Band Adaptive Beamforming. . . . 220 5.10.4 QR Decomposition and Neural Networks. . . . . . . . . . 222 5.11 Comments and Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . 225 5.11.1 Additional Topics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 Appendix 5.A Modified Gram-Schmidt Algorithm. . . . . . . . . . . . . 229 Appendix 5.B Constraints with Leading Zeros . . . . . . . . . . . . . . . . 232 Appendix 5.C Weighted Least-Squares and Hyperbolic Rotations. 235 Appendix 5.D Principal Symbols Used in this Chapter. . . . . . . . . . 241 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 6. Two-Dimensional Adaptive Beamforming: Algorithms and Their Implementation By T. V. Ho and J. Litva (With 19 Figures). . . . . . . 249 6.1 Arrangement of the Chapter .................... : . . . . . . 251 6.2 Adaptive Beamforming Techniques. . . . . . . . . . . . . . . . . . . . . . 252 6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 6.2.2 Classical Adaptive Beamforming. . . . . . . . . . . . . . . . . . . . 255 6.2.3 Modern Adaptive Beamforming . . . . . . . . . . . . . . . . . . . . 261 6.3 2D Adaptive Beamforming Algorithm and Implementation. . . . 264 6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 6.3.2 Classical Approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 6.3.3 2D QRD-LS Algorithm and Systolic Array Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 6.4 Simulation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 Part III Imaging 7. The Radio Camera By B.D. Steinberg (With 11 Figures) . . . . . . . . . 295 7.1 Problems..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 7.2 Adaptive Beamforming: Dominant Scatterer Algorithm. . . . . . . 296 7.3 Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 7.4 Adaptive Beamforming: Spatial Correlation Algorithm. . . . . . . 303 7.5 Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 7.6 Number of Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 7.7 Number of Bits per Sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 7.8 Data Truncation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 7.9 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 Subject Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Contributors Haykin, Simon Communications Research Laboratory, McMaster University 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada Ho, Terence V. Com Dev Ltd., 155 Sheldon Dr., Cambridge Ontario, NIR 7H6, Canada Litva, John Communications Research Laboratory, McMaster University 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada McWhirter, John G. Royal Signals and Radar Establishment, St. Andrew's Road Malvern, Worcs. WR14 3PS, UK Nehorai, Arye Department of Electrical Engineering, Yale University P.O. Box 2157, Yale Station, New Haven, CT 06520, USA Nickel, Ulrich Electronics Department, Forschungsinstitut fur Funk und Mathematik (FGAN-FFM), Neuenahrer Str. 20, W-5307 Wachtberg 7, Fed. Rep. of Germany Otters ten, Bjorn Signal Processing Division, Department of Telecommunication Theory, Royal Institute of Technology S-100 44 Stockholm, Sweden Shepherd, Terence J. Royal Signals and Radar Establishment, St. Andrew's Road Malvern, Worcs. WR14 3PS, UK Steinberg, Bernard D. The Moore School of Electrical Engineering, University of Pennsylvania Philadelphia, PA 19104, USA
Description: