ebook img

r PDF

135 Pages·2014·4.98 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview r

HELMHOLTZ AND HIGH-FREQUENCY MAXWELL MULTILEVEL FAST MULTIPOLE ALGORITHMS WITH SELF-TUNING LIBRARY by Abdulkadir C. Yucel A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science (Electrical Engineering) in The University of Michigan 2008 Thesis Committee: Professor Eric Michielssen, Chair Associate Professor Mahta Moghaddam Assistant Professor Anthony Grbic “Đlm kesbiyle pâye-i rifat, Arzuyu muhâl imiş ancak, Aşk imiş her ne var âlemde, Đlm bir kîl-ü kâl imiş ancak.” - Fuzûlî ACKNOWLEDGEMENTS I would like to express my gratitude to my advisor, Professor Eric Michielssen, for his support and guidance. His sincerity, scientific enthusiasm and persistence have set a strong scientific model in this student’s mind. I am also grateful to Professor Mahta Moghaddam and Professor Anthony Grbic for serving on my committee. Many special thanks go to Professor Ahmet Arif Ergin from Gebze Institute of Technnology for his encouragements and close mentorship throughout the last seven years of my life. In addition, I would like to thank to Turkish Fulbright Commission for financially supporting my grad research. Thanks to my collegeues in Professor Michielssen’s research group with whom I’ve shared knowledge, experience, hard times, fun, and lunch/dinner tables. I owe particular acknowledgement to Dr. Francesco Andriulli, Dr. Hakan Bagci, Xi Lin, Pelumi Osoba, Felipe Valdes Valenzuela, and Onur Bakir. In addition, I am grateful to all radlabers, particularly Scott Rudolph, Amit Patel, and Morteza Nick for their valuable friendships. Last but not least, I would like to thank to my father, Dr.T.Savas Yucel, from whom I’ve learned how to struggle for what I set to my mind, to my mother, S.Sevtap Yucel, who taught me how to be patient while she’s raising me and my brothers up with her great endurance and love. Moreover, many thanks to my brothers Dr. Ali Bogachan Yucel and Abdullah Yucel for their encouragements and support. I desire to acknowledge some of friends who are like members of my family and always with me through their existences and encouragements. A special mention goes to Seyit Ahmet Sis, Atila Ucar, and Ali Burak Unlu. ii Ann Arbor 2008 iii TABLE OF CONTENTS ACKNOWLEDGEMENTS.............................................................................................ii TABLE OF CONTENTS................................................................................................iv LIST OF FIGURES.........................................................................................................vi LIST OF TABLES...........................................................................................................ix CHAPTER 1 INTRODUCTION.....................................................................................1 1.1 Background...............................................................................................................1 1.2 Motivation.................................................................................................................2 1.3 Organization of Chapters..........................................................................................4 CHAPTER 2 FMM AND MLFMA.................................................................................5 2.1 Introduction...............................................................................................................5 2.2 Integral Equations.....................................................................................................6 2.3 Approximating the Green’s Function.......................................................................9 2.4 Fast Multipole Method for CFIE............................................................................12 2.5 The Multilevel Fast Multipole Algorithm for CFIE...............................................16 2.6 Optimum Local Interpolation Scheme....................................................................19 CHAPTER 3 SCALAR AND VECTOR SPHERICAL FILTERS ...........................22 3.1 Introduction.............................................................................................................22 3.2 The Scalar Spherical Filter.....................................................................................23 3.2.1 Overview.......................................................................................................23 3.2.2 The Standard Scalar Spherical Filter............................................................24 3.2.3 The Fast Scalar Spherical Filter....................................................................29 3.3 The Vector Spherical Filter.....................................................................................31 3.3.1 Overview.......................................................................................................31 3.3.2 The Standard Vector Spherical Filter...........................................................31 3.3.3 The Fast Vector Spherical Filter...................................................................35 3.4 Implementation.......................................................................................................40 iv CHAPTER 4 MLFMA SELF-TUNING LIBRARY ...................................................45 4.1 Introduction.............................................................................................................45 4.2 Truncation Number Estimator Algorithm...............................................................46 4.2.1 Overview.......................................................................................................46 4.2.2 The Nature of the Diagonal Addition Theorem............................................47 4.2.3 Algorithm......................................................................................................54 4.2.3.1 The Bracketing Algorithm....................................................................55 4.2.3.2 The Golden Section Search Algorithm.................................................61 4.2.3.3 The Bisection Root Finding Algorithm................................................65 4.2.3.4 The Accelerators...................................................................................68 4.2.4 Numerical Results.........................................................................................71 4.3 The Local Interpolation Parameters Estimator Algorithms....................................75 4.3.1 Overview.......................................................................................................75 4.3.2 The Number of Interpolation Points (p) Estimator Algorithm.....................76 4.3.2.1 Algorithm..............................................................................................76 4.3.2.2 Numerical Results.................................................................................78 4.3.3 The Over-Sampling Ratio (s) Estimator Algorithm......................................86 4.3.3.1 Algorithm..............................................................................................86 4.3.3.2 Numerical Results.................................................................................87 CHAPTER 5 NUMERICAL RESULTS.......................................................................96 5.1 Introduction.............................................................................................................96 5.2 One-Level FMM.....................................................................................................96 5.2.1 Results for Helmholtz MLFMA....................................................................97 5.2.2 Results for Maxwell MLFMA....................................................................102 5.3 Two-Level FMM..................................................................................................107 5.3.1 Results for Helmholtz MLFMA..................................................................108 5.3.2 Results for Maxwell MLFMA....................................................................112 SUMMARY AND FUTURE WORK..........................................................................117 REFERENCES..............................................................................................................119 v LIST OF FIGURES Figure 2-1: The vector quantities illustrating the vector decomposition between the source and the observer locations.....................................................................................10 Figure 2-2: The box surrounding the object is subdivided hierarchically in each direction. Each numbered box contains basis functions...................................................................14 Figure 2-3: Multilevel interactions between an observer box and the remaining source boxes. The interactions with near field neighbors are directly computed by conventional MoM.................................................................................................................................17 Figure 4-1: Large buffer case is depicted for the worst case analysis in FMM (ten box buffer). Two fictitious spheres, source sphere and observer sphere, enclose the boxes...50 Figure 4-2: Small buffer case is depicted for the worst case analysis in FMM (one box buffer). Two fictitious spheres, source sphere and observer sphere, enclose the boxes...50 Figure 4-3: The relative error of the addition theorem for a source-observer configuration is plotted with the crosses. Here, kd=20 and kX=40 (one box buffer case).....................51 Figure 4-4: Different source/observer distributions are presented to investigate the relative error......................................................................................................................52 Figure 4-5: Relative errors of different distributions for one buffer case.........................53 Figure 4-6: Relative errors of different distributions for large buffer case.......................54 ( ) Figure 4-7: A unimodal function whose minimum is bracketed by the triplet a,b,c ...56 Figure 4-8: Locations of the points in the interval bracketing the global minimum........61 Figure 4-9: A smooth continuous function has a root on the interval [a,b] . c is the midpoint of the interval.....................................................................................................65 Figure 4-10: Truncation error plot for kd=20 and kX=40.................................................72 Figure 4-11: Truncation error plot for kd=20 and kX=220...............................................73 Figure 4-12: Truncation error plot for kd=40 and kX=80.................................................74 Figure 4-13: Interpolation errors are plotted for different desired error levels with estimated p – parameters, L=40, and s=2..........................................................................80 vi Figure 4-14: Interpolation errors are plotted for different desired error levels with estimated p – parameters, L=400, and s=1.2.....................................................................81 Figure 4-15: Interpolation errors are plotted for different desired error levels with estimated p – parameters, L=1000, and s=1.2...................................................................82 Figure 4-16: Interpolation errors are plotted for different desired error levels with the p – parameters estimated by the proposed algorithm, L=100, and s=1.2...............................83 Figure 4-17: Interpolation errors are plotted for different desired error levels with the p – parameters estimated by previously used formula, L=100, and s=1.2..............................84 Figure 4-18: Interpolation errors are plotted for different desired error levels with the p – parameters estimated by the proposed algorithm, L=100, and s=2..................................85 Figure 4-19: Interpolation errors are plotted for different desired error levels with the p – parameters estimated by previously used formula, L=100, and s=2.................................86 Figure 4-20: Interpolation errors are plotted for different desired error levels with estimated s – parameters, L=40, and p=10........................................................................89 Figure 4-21: Interpolation errors are plotted for different desired error levels with estimated s – parameters, L=400, and p=15......................................................................90 Figure 4-22: Interpolation errors are plotted for different desired error levels with estimated s – parameters, L=1000, and p=15....................................................................91 Figure 4-23: Interpolation errors are plotted for different desired error levels with the s – parameters estimated by the proposed algorithm, L=100, and p=8..................................92 Figure 4-24: Interpolation errors are plotted for different desired error levels with the s – parameters estimated by previously used formula, L=100, and p=8................................93 Figure 4-25: Interpolation errors are plotted for different desired error levels with the s – parameters estimated by the proposed algorithm, L=100, and p=25................................94 Figure 4-26: Interpolation errors are plotted for different desired error levels with the s – parameters estimated by previously used formula, L=100, and p=25..............................95 Figure 5-1: One-level FMM test configuration................................................................97 Figure 5-2: Relative errors of field values at observer points at one-level FMM for the configuration d =4l and X =1000l .............................................................................98 Figure 5-3: Relative errors of field values at observer points at one-level FMM for the configuration d =4l and X =16l .................................................................................99 Figure 5-4: Relative errors of field values at observer points at one-level FMM for the configuration d =40l and X =1000l .........................................................................100 Figure 5-5: Relative errors of field values at observer points at one-level FMM for the configuration d =150l and X =1000l ........................................................................101 Figure 5-6: Relative errors of field values at observer points at one-level FMM for the configuration d =4l and X =1000l (with formulas in literature)..............................102 vii Figure 5-7: Relative errors of field values at observer dipoles at one-level FMM for the configuration d =4l and X =1000l ...........................................................................103 Figure 5-8: Relative errors of field values at observer dipoles at one-level FMM for the configuration d =4l and X =16l ...............................................................................104 Figure 5-9: Relative errors of field values at observer dipoles at one-level FMM for the configuration d =40l and X =1000l .........................................................................105 Figure 5-10: Relative errors of field values at observer dipoles at one-level FMM for the configuration d =65l and X =1000l ..........................................................................106 Figure 5-11: Relative errors of field values at observer dipoles at one-level FMM for the configuration d =4l and X =1000l (with formulas in literature)..............................107 Figure 5-12: Two-level FMM test configuration............................................................108 Figure 5-13: Relative errors of field values at observer points at two-level FMM for the configuration d =4l and X =1000l ...........................................................................109 Figure 5-14: Relative errors of field values at observer points at two-level FMM for the configuration d =4l and X =38.62l ..........................................................................110 Figure 5-15: Relative errors of field values at observer points at two-level FMM for the configuration d =40l and X =1000l .........................................................................111 Figure 5-16: Relative errors of field values at observer points at two-level FMM for the configuration d =100l and X =1000l ........................................................................112 Figure 5-17: Relative errors of field values at observer dipoles at two-level FMM for the configuration d =4l and X =1000l ...........................................................................113 Figure 5-18: Relative errors of field values at observer dipoles at two-level FMM for the configuration d =4l and X =38.62l ..........................................................................114 Figure 5-19: Relative errors of field values at observer dipoles at two-level FMM for the configuration d =40l and X =1000l .........................................................................115 Figure 5-20: Relative errors of field values at observer dipoles at two-level FMM for the configuration d =60l and X =1000l ..........................................................................116 viii LIST OF TABLES Table 4-1: Truncation number values corresponding to desired error level and computational time spent in the estimator routine for the configuration kd=20, kX=40..72 Table 4-2: Truncation number values corresponding to desired error level and computational time spent in the estimator routine for the configuration kd=20, kX=220.73 Table 4-3: Truncation number values corresponding to desired error level and computational time spent in the estimator routine for the configuration kd=40, kX=80..74 ix

Description:
Many special thanks go to Professor Ahmet Arif Ergin from Gebze Institute of. Technnology for A special mention goes to Seyit Ahmet Sis, Atila Ucar,.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.