Quinone electrochemistry in acidic and alkaline solutions & its application in large scale energy storage Michael R. Gerhardt1, Kaixiang Lin2, Qing Chen1, Michael P. Marshak1,3, Liuchuan Tong2, Roy G. Gordon1,2, Michael J. Aziz1 1) Harvard School of Engineering and Applied Sciences, Cambridge, MA 02138 2) Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138 1 3) Department of Chemistry and Biochemistry, University of Colorado, Boulder CO 80309 Energy Storage (kWh) Power Generation (kW) 2 Photo: Eliza Grinnell, SEAS Communications O OH + 2H+, 2e‐ O In aqueous acidic solution OH Huskinson, B., Marshak, M. P., Suh, C., Er, S., Gerhardt, M.R., Galvin, C.J., Chen, X., Aspuru‐Guzik, A., Gordon, R.G., and Aziz, M.J. (2014). 33 Nature, 505(7482), 195–198. O OH Chemistry Solution Cost ($/kWh) Quinone‐Bromide <$27 + 2H+, 2e‐ Vanadium Redox $50 – $180 “I wish I could get that price!” O In aqueous acidic solution OH Huskinson, B., Marshak, M. P., Suh, C., Er, S., Gerhardt, M.R., Galvin, C.J., Chen, X., Aspuru‐Guzik, A., Gordon, R.G., and Aziz, M.J. (2014). 44 Nature, 505(7482), 195–198. O OH Chemistry Solution Cost ($/kWh) Quinone‐Bromide <$27 + 2H+, 2e‐ Vanadium Redox $50 – $180 “I wish I could get that price!” O In aqueous acidic solution OH Customizable Huskinson, B., Marshak, M. P., Suh, C., Er, S., Gerhardt, M.R., Galvin, C.J., Chen, X., Aspuru‐Guzik, A., Gordon, R.G., and Aziz, M.J. (2014). 55 Nature, 505(7482), 195–198. O OH Chemistry Solution Cost ($/kWh) Quinone‐Bromide <$27 + 2H+, 2e‐ Vanadium Redox $50 – $180 “I wish I could get that price!” O In aqueous acidic solution OH Customizable Long cycle life Huskinson, B., Marshak, M. P., Suh, C., Er, S., Gerhardt, M.R., Galvin, C.J., Chen, X., Aspuru‐Guzik, A., Gordon, R.G., and Aziz, M.J. (2014). 66 Nature, 505(7482), 195–198. 0.2 AQDS ) 2 m Potentiostat 0.1 c / A m ( y 0.0 t i s n O e D -0.1 HO3S SO3H t n e r r O u Electrolyte Solution -0.2 C E = 0.210 V vs SHE 0 -0.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 Overpotential (V) [1] K. B. Oldham, J. C. Myland,Electrochim. Acta. 56, 10612–10625 (2011). 77 [2] B. Huskinsonet al., Nature. 505, 195–198 (2014). 0.2 AQDS ) Model 2 m Reversible 2‐electron model: 0.1 c A/ assume AQDS concentration at m electrode surface is dictated by ( y 0.0 Nernst equation[1]. Reaction t i s rate is mass transport limited. n O e D -0.1 HO3S SO3H t Measured rate constant n e r k = 7.2 × 10−3 cm/s [2] r O 0 u -0.2 C E = 0.210 V vs SHE 0 -0.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 Overpotential (V) [1] K. B. Oldham, J. C. Myland,Electrochim. Acta. 56, 10612–10625 (2011). 88 [2] B. Huskinsonet al., Nature. 505, 195–198 (2014). O HO S SO H 3 3 O No catalyst required Huskinson, B., Marshak, M. P., et al. (2014). Nature, 505(7482), 195–198. 9 1.4 1.2 1.0 ) V 0.8 ( e g a 0.6 State of Charge t ol 10% V 0.4 30% 50% 70% 0.2 90% 0.0 -2 -1 0 1 2 3 -2 Current Density (A cm ) 0.7 State of Charge 10% 0.6 2) 30% -m 50% c 0.5 70% W 90% ( 0.4 y t i s n 0.3 e D r 0.2 e w o P 0.1 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Current Density (A cm-2) 10 Data: Qing Chen
Description: