Queueing Theory 2 SCIENCES Mathematics, Field Director – Nikolaos Limnios Queuing Theory and Applications, Subject Head – Vladimir Anisimov Queueing Theory 2 Advanced Trends Coordinated by Vladimir Anisimov Nikolaos Limnios First published 2020 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2020 The rights of Vladimir Anisimov and Nikolaos Limnios to be identified as the author of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2019957522 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78945-004-0 ERC code: PE1 Mathematics PE1_21 Application of mathematics in industry and society Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Chapter 1. Stability Analysis of Queueing Systems based on SynchronizationoftheInputandMajorizingOutputFlows . . . . . . 1 LarisaAFANASEVA 1.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.Modeldescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.Auxiliaryserviceprocess . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.Instabilityresultforthecaseρ≥1 . . . . . . . . . . . . . . . . . . . . . 9 1.5.Stochasticboundednessforthecaseρ<1 . . . . . . . . . . . . . . . . 10 1.6.Queueingsystemwithunreliableserversandpreemptiveresume servicediscipline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.7.Discrete-timequeueingsystemwithinterruptionsandpreemptive repeatdifferentservicediscipline . . . . . . . . . . . . . . . . . . . . . . . . 15 1.8.Queueingsystemwithapreemptiveprioritydiscipline . . . . . . . . . . 18 1.9.Queueingsystemwithsimultaneousserviceofacustomerbyarandom numberofservers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.10.Applicationstotransportsystemsanalysis . . . . . . . . . . . . . . . . 23 1.11.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.12.Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.13.References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 vi QueueingTheory2 Chapter2.QueueingModelsinServices–Analyticaland SimulationApproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 SrinivasR.CHAKRAVARTHY 2.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.Phase-typedistributionsandthebatchMarkovianarrivalprocess . . . . 34 2.2.1.Phase-typedistributions . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.2.SomeusefulresultsrelatedtocontinuousPH distributions . . . . 36 2.2.3.ThebatchMarkovianarrivalprocess . . . . . . . . . . . . . . . . . 40 2.3.GenerationofMAP processesfornumericalpurposes . . . . . . . . . 42 2.4.AnalysisofselectedqueueingmodelsofBMAP/G/ctype . . . . . . 44 2.4.1.MAP/PH/1queueingmodel . . . . . . . . . . . . . . . . . . . . 44 2.4.2.Thesystemperformancemeasures . . . . . . . . . . . . . . . . . . 48 2.4.3.IllustrativenumericalexamplesforMAP/PH/1 . . . . . . . . . 49 2.4.4.MAP/M/cqueueingmodel . . . . . . . . . . . . . . . . . . . . . 55 2.4.5.Thesystemperformancemeasures . . . . . . . . . . . . . . . . . . 57 2.4.6.IllustrativenumericalexamplesforMAP/M/c . . . . . . . . . . 57 2.5.SimulatedmodelsofBMAP/G/ctypequeues . . . . . . . . . . . . . 58 2.5.1.SimulatedmodelvalidationusingMAP/M/ctypequeues . . . . 59 2.5.2.SimulatedmodelvalidationusingMAP/PH/1type queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.5.3.SelectedsimulatedmodelsofBMAP/G/ctypequeues . . . . . 59 2.6.AnalysisofselectedqueueingmodelsofBMAP/G/ctypewith avacation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.6.1.MAP/PH/1queueingmodelwithavacation . . . . . . . . . . . 66 2.6.2.Thesystemperformancemeasures . . . . . . . . . . . . . . . . . . 69 2.6.3.IllustrativenumericalexamplesforMAP/PH/1with avacation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.6.4.Validationofthesimulatedmodelforvacationtypequeues . . . . 74 2.6.5.SelectedsimulatedmodelsofBMAP/G/ctypequeueswith avacation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2.7.Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2.8.References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Chapter3.DistributionsandRandomProcessesRelatedto QueueingandReliabilityModels . . . . . . . . . . . . . . . . . . . . . . . 81 BoyanDIMITROV 3.1.Someusefulnotations,relationshipsandinterpretations . . . . . . . . . 81 3.2.Unreliableservicemodelandreliabilitymaintenance . . . . . . . . . . 85 3.3.Characterizationsofexponentialandgeometricdistributionsvia propertiesofservicetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.3.1.Instantrepairs: characterizationofgeometricdistribution . . . . . 89 Contents vii 3.3.2.Instantrepairs: characterizationsoftheexponential distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.3.3.Varioussimplifyingconditions . . . . . . . . . . . . . . . . . . . . 101 3.3.4.Unreliableservice,repairtimesincluded . . . . . . . . . . . . . . 111 3.4.Probabilitydistributionsalmosthavinglackofmemoryproperty . . . . 115 3.4.1.Servicetimeonanunreliableserver: instantaneousrepairs . . . . 116 3.4.2.PropertiesofALMdistributions,andequivalentpresentations . . 119 3.4.3.Periodicityinnaturalphenomena . . . . . . . . . . . . . . . . . . . 126 3.5.Randomprocesseswithaperiodicnature . . . . . . . . . . . . . . . . . 126 3.5.1.Countingprocesses. . . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.5.2.CharacterizationofanNPP . . . . . . . . . . . . . . . . . . . . . . 128 3.5.3.Applicationsinriskmodeling . . . . . . . . . . . . . . . . . . . . . 131 3.6.Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 3.7.References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Chapter4.TheImpactofInformationStructureonStrategic BehaviorinQueueingSystems . . . . . . . . . . . . . . . . . . . . . . . . 137 AntonisECONOMOU 4.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 4.2.Game-theoreticalframeworkinqueueing . . . . . . . . . . . . . . . . . 139 4.3.Theunobservablemodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 4.4.Theobservablemodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 4.5.Comparisonoftheunobservableandtheobservablemodels. . . . . . . 151 4.6.Partiallyobservablemodels . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.7.Heterogeneouslyobservablemodels . . . . . . . . . . . . . . . . . . . . 158 4.8.Observable-with-delaymodels . . . . . . . . . . . . . . . . . . . . . . . 162 4.9.Conclusionsandliteraturereviewforfurtherstudy . . . . . . . . . . . . 167 4.10.Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 4.11.References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Chapter5.Non-extensiveMaximumEntropyFormalismsand InductiveInferenceofaStableM/G/1QueuewithHeavyTails . . . . 171 DemetresD.KOUVATSOSandIsmailA.MAGEED 5.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 5.2.GeneralsystemsandinductiveMEformalisms . . . . . . . . . . . . . . 175 5.2.1.“Classical”Shannon’sEMEformalismwithshort-range interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 5.2.2.Rényi’sandTsallis’sNMEformalismswithlong-range interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 5.3.NMEformalismsandEMEconsistencyaxioms . . . . . . . . . . . . . 177 5.4.AstableM/G/1queuewithlong-rangeinteractions. . . . . . . . . . . . 179 5.4.1.Background: Shannon’sEMEstateprobabilityofastableM/G/1 queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 viii QueueingTheory2 5.4.2.Tsallis’andRényi’sNMEstateprobabilitiesofastableM/G/1 queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 5.4.3.ExactRényi’sandTsallis’NMEstateprobabilitieswithdistinct GEq-typeservicetimedistributions . . . . . . . . . . . . . . . . . . . . . 183 5.5.Numericalexperimentsandinterpretations . . . . . . . . . . . . . . . . 188 5.6.Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.7.Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 5.8.Appendix: Rényi’sNMEformalismsversusEMEconsistency axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 5.8.1.Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 5.8.2.Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.8.3.Systemindependence . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.8.4.Subsetindependence . . . . . . . . . . . . . . . . . . . . . . . . . . 198 5.9.References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Chapter6.InventorywithPositiveServiceTime: aSurvey . . . . . . 201 AchyuthaKRISHNAMOORTHY,DhanyaSHAJINandViswanathC.NARAYANAN 6.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 6.2.Queueinginventorymodels . . . . . . . . . . . . . . . . . . . . . . . . . 203 6.2.1.Single-commodityqueueing-inventorysystems. . . . . . . . . . . 206 6.2.2.Productioninventorysystems . . . . . . . . . . . . . . . . . . . . . 215 6.2.3.Multicommodityqueueing-inventorysystem . . . . . . . . . . . . 217 6.2.4.Retrialqueueswithinventory . . . . . . . . . . . . . . . . . . . . . 219 6.2.5.Queuesrequiringadditionalitemsforservice . . . . . . . . . . . . 222 6.2.6.Queueing-inventory: someworkinprogressandsuggestionsfor futurestudies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6.3.Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 6.4.References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Chapter7.AStabilityAnalysisMethodofRegenerativeQueueing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 EvseyMOROZOVandBartSTEYAERT 7.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 7.2.Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 7.3.Thesingle-serversystem. . . . . . . . . . . . . . . . . . . . . . . . . . . 244 7.4.Thezero-delayedmultiserversystem . . . . . . . . . . . . . . . . . . . . 248 7.5.Thedelayedmultiserversystem: finitenessofthefirstregeneration period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 7.6.Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 7.6.1.Somecommentsonthemethod . . . . . . . . . . . . . . . . . . . . 260 7.7.Relatedresearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 7.8.Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 7.9.References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Contents ix Chapter8.TransientAnalysisofMarkovianQueueingSystems: aSurveywithFocusonClosed-formsandUniformization . . . . . . 269 GerardoRUBINO 8.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 8.2.BasicsonMarkovianqueues . . . . . . . . . . . . . . . . . . . . . . . . 272 8.2.1.Markovmodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 8.2.2.Uniformization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 8.3.Firstexamples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 8.3.1.TheEhrenfestmodelincontinuous-time. . . . . . . . . . . . . . . 275 8.3.2.TheM/M/∞model . . . . . . . . . . . . . . . . . . . . . . . . . 276 8.3.3.Aqueuewithnoserverandcatastrophes . . . . . . . . . . . . . . 277 8.3.4.ThefundamentalM/M/1model . . . . . . . . . . . . . . . . . . . 278 8.3.5.M/M/1withboundedwaitingroom: theM/M/1/H model . . 282 8.3.6.Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 8.4.Anuniformization-basedpathfortheM/M/1withmatrixgenerating functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 8.4.1.Generalcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 8.4.2.MeannumberofcustomersattimetintheM/M/1 . . . . . . . . 287 8.5.Anuniformization-basedpathusingduality . . . . . . . . . . . . . . . . 290 8.5.1.Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 8.5.2.Thepathtowardthetransientstatedistributionsusingduality. . . 293 8.5.3.ApplicationtotheM/M/1queueingsystem . . . . . . . . . . . . 294 8.5.4.ApplicationtotheM/M/1/H queueingsystem . . . . . . . . . . 295 8.5.5.ApplicationtoanM/M/1/H modelwithcatastrophes . . . . . . 297 8.6.Othertransientresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 8.6.1.BusyperiodoftheM/M/1 . . . . . . . . . . . . . . . . . . . . . . 299 8.6.2.MaxbacklogoftheM/M/1overafinitetimeinterval . . . . . . 299 8.6.3.M/E/1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 8.7.Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 8.8.References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 ListofAuthors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 Preface Vladimir ANISIMOV1 andNikolaos LIMNIOS2 1AmgenInc.,London,UnitedKingdom 2UniversityofTechnologyofCompiègne,France Queueing theory is a huge and very rapidly developing branch of science belonging to probability theory and stochastic modelling that originated a long time ago from the pioneering works by Erlang (1909) on the analysis of the models for telephone communication using Poisson processes. Later on, these results were extended further in different directions in the works of such famous mathematicians asPollaczek,Khinchin,Kendall,Kleinrockandmanyothers. Nowadays, queueing theory is rapidly growing in various areas including a theoreticalanalysisofqueueingmodelsandnetworksofrathercomplicatedstructure using rather sophisticated mathematical models and various types of stochastic processes. It also includes very wide areas of modern applications: computing and telecommunicationnetworks,trafficengineering,mobiletelecommunications,etc. The aim of this second volume, together with Volume 1, is to reflect the current cutting-edge thinking and established practices in the analysis and applications of queueingmodels. Thisvolumeincludes8chapterswrittenbyexpertswell-knownintheirareas. Twochapters,Chapters1and7,aredevotedtoinvestigatingastabilityanalysisof sometypesofmultiserverregenerativequeueingsystemswithheterogeneousservers andaregenerativeinputflowusingsynchronizationoftheinputandmajorizingoutput flows; and a stability analysis of regenerative queueing systems based on a renewal analysistechnique,whichisillustratedonclassicalGI/G/1andGI/G/mqueueing systems. QueueingTheory2, coordinatedbyVladimirANISIMOV,NikolaosLIMNIOS.©ISTEEditions2020.