SScchhoollaarrss'' MMiinnee Masters Theses Student Theses and Dissertations Spring 2009 QQuueenncchh ffaaccttoorr aannaallyyssiiss ooff wwrroouugghhtt aanndd ccaasstt aalluummiinnuumm aallllooyyss Vishwanath Gandikota Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Materials Science and Engineering Commons DDeeppaarrttmmeenntt:: RReeccoommmmeennddeedd CCiittaattiioonn Gandikota, Vishwanath, "Quench factor analysis of wrought and cast aluminum alloys" (2009). Masters Theses. 7078. https://scholarsmine.mst.edu/masters_theses/7078 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. ? . QUENCH FACTOR ANALYSIS OF WROUGHT AND CAST ALUMINUM ALLOYS by VISHW ANATH GANDIKOTA A THESIS Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN MATERIALS SCIENCE AND ENGINEERING 2009 Approved by Joseph W. Newkirk, Advisor Von L. Richards Matthew J. 0' Keefe © 2009 Vishwanath Gandikota All Rights Reserved Ill ABSTRACT Mechanical property variation across the cross section of heat treatable aluminum alloys is a major concern. To minimize such variation, a proper understanding of kinetic transformations and estimation of mechanical properties is required. The Jominy end quench test has been used successfully to study the effect of quench rate on the final heat treated properties of wrought and cast aluminum alloys. This test produces varying cooling rates along the length of a cylindrical sample cooled with water at one end. Jominy bars of wrought and cast aluminum alloys were solutionized, end quenched, and aged to T6 temper condition after delays of 1 hour and 120 hours. The hardness values were measured along the length of the Jominy bar. Previous studies have shown that the hardness along the length of the bar follows an A vrami relationship. The present work also measures hardness along the Jominy bar, and the data was used to determine the A vrami parameters (k,n) for various delays and heat treatments of alloys. The accuracy ofthe Avrami parameters was verified by plotting the calculated Avrami against the hardness data as a function of distance from the quenched end. Mini tensile samples were then taken from specific locations on the Jominy bar. The experimental strength values and their Avrami fit were plotted as a function of distance from the quenched end. Strength values estimated from the A vrami fit were 95% accurate. This study allows prediction of strength at a given quench rate. Finally, cooling curves were simulated at various points along the Jominy bar using FLUENT. Quench factors were calculated along the length of the bar. Using the cooling curves and the calculated quench factors, C-curves were generated for each alloy, and a specific heat treatment applied. IV ACKNOWLEDGEMENTS I wish to express my deepest gratitude to my advisor, Dr. Joseph W. Newkirk for providing me with an opportunity to pursue a master's degree in Missouri University of Science and Technology. His enthusiasm and constant support have motivated me to successfully complete my research work. His suggestions, guidance and personal attention have been constant source of encouragement. I would like to thank my committee members, Dr.Von L. Richards and Dr. Matthew J. O'Keefe for their time and effort. I would like to Dr. Rajiv Mishra for providing me the required equipment. I would like to thank Anand Jambunathan and Jen Hsien Hsu for their continuous support. I would also like to thank the research group working for Dr. Rajiv Mishra in helping with the mini tensile samples testing. Finally, I would like to thank my parents, brother and friends for their continuous support and care. v TABLE OF CONTENTS Page ABSTRACT ...................................................................................................................... .iii ACKNOWLEDGEMENTS ........................................................................ iv LIST OF ILLUSTRATIONS ........................................................................................... viii LIST OF TABLES .............................................................................................................. xi SECTION 1. INTRODUCTION .............................................................................................. 1 1.1.BACKGROUND ........................................................................................... 1 1.2. PROBLEM STATEMENT ........................................................................... I 1.3. METHODOLOGY ...................................................................................... 2 2. LITERATURE REVIEW .................................................................................... 4 2.1. Al-Zn-Mg-Cu ALLOY SYSTEM ................................................................. 6 2.1.1. Effects of Processing Parameters ................................................. 7 2.1.1.1. Solution Heat Treatment ................................................ 8 2.1.1.2. Quenching ............................................................................. 9 2.1.1.3. Aging .......................................................................... 9 2.2. Al-Mg-Si SYSTEM .................................................................................... II 2.2.1. Effects of Processing Parameters ........................................... 13 2.2.1.1. Solution Heat Treatment. .......................................... 13 2.2.1.2. Quenching ................................................................ 13 2.2.1.3. Aging .......................................................................... 13 2.3. CAST ALUMINUM ALLOYS .................................................................. 14 VI 2.3.1. Effects of Processing Parameters ............................................... 16 2.4. USE OF JOMINY END QUENCH TEST ..................................... 17 2.5. QUENCH FACTOR ANALYSIS ...................................................... 20 3. EXPERIMENTAL PROCEDURE ................................................................... 23 3.1. JOMINY END QUENCH TEST ............................................................... 23 3.2. AGING TREATMENT. ............................................................................ 25 3.3. HARDNESS STUDIES ............................................................................. 25 3.4. MINI TENSILE TESTING ............................................................... 29 3.5. SIMULATION OF COOLING CURVES ......................................... 32 4. RESULTS AND DISCUSSION ........................................................................ 37 4.1. HARDNESS VERSUS JOMINY DISTANCE PLOTS ............................. 37 4.2. MINI TENSILE TESTING ......................................................................... 45 4.3. QUENCH FACTOR ANALYSIS .............................................................. 56 5. CONCLUSIONS ............................................................................................... 59 6. FUTURE WORK. .............................................................................................. 60 APPENDICES A. HARDNESS VALUES ........................................................................... 61 B. TENSILE DATA ............................................................................... 70 C. COOLING CURVES DATA ................................................................ 87 D. EXAMPLE OF MATLAB CODE ......................................................... 103 E. EXAMPLE OF STRESS STRAIN CURVE .............................................. lOS F. THERMOCOUPLE COOLING DATA FOR A356 ..................................... 107 BIBLIOGRAPHY ............................................................................................................ IIS Vll VITA ............................................................................................................................... 118 Vlll LIST OF ILLUSTRATIONS Figure Page 3.1. Jominy end quench System with water umbrella indicating proper alignment.. ........ 25 3.2. First fixture used for hardness testing, with Jominy sample and indexing wheel for position change. ..................................................................................................... 27 3.3. Second fixture used for hardness testing, with Jominy sample and indexing wheel for position change ............................................................................... 28 3.4. Hardness as a function of distance from the quenched end with the first fixture ....... 28 3.5. Hardness as a function of distance from the quenched end with the second fixture .. 29 3.6. Mini tensile test sample used for tensile testing ......................................................... 31 3.7. Positioning of the mini tensile specimens on the slice of JEQ cylinder. .................... 31 3.8. Mini tensile test frame with the cross heads .............................................................. .32 3.9. 2-D view ofmeshed cylinder. ..................................................................................... 33 3.10. 3-D view ofmeshed cylinder .................................................................................... 34 3 .11. Cross section of cylinder showing meshed elements ................................................ 34 3.12. Simulated cooling curves at various locations on the Jominy Bar for 7075 .......... 35 3.13. Comparison between simulated and thermocouple cooling curves ................... .36 4.1. Rockwell 8 Hardness plots for A vrami and experimental values of 707 5, with 1-hr delay ...................................................................................... 38 4.2. Rockwell 8 Hardness plots for Avrami and experimental values of7075, with 120-hr delay ............................................................................... 38 4.3. Rockwell 8 Hardness plots for Avrami and experimental values of6061, with 1-hr delay .................................................................................. 39 4.4. Rockwell B Hardness plots for A vrami and experimental values of 6061, with 120-hr delay ................................................................................................... 39 4.5. Vickers micro hardness plots for A vrami and experimental values of 8319, with 1-hr delay ......................................................................................... 40 IX 4.6. Vickers microhardness plots for Avrami and experimental values of8319, with 120-hr delay ................................................................................. 40 4.7. Vickers microhardness plots for Avrami and experimental values of A356, with 1-hr delay ................................................................................... 41 4.8. Vickers microhardness plots for Avrami and experimental values of A356, with 120-hr delay .................................................................................. 41 4.9. Variation ofUTS with Jominy distance for 7075 with 1-hr delay ...................... .46 4.10. Variation ofYS with Jominy Distance for 7075 with 1-hr delay ..................... .46 4.11. Variation of UTS with Jominy distance for 7075 with 120-hr delay ................. .47 4.12. Variation ofYS with Jominy distance for 7075 with 120-hr delay ................... .47 4.13. Variation ofUTS with Jominy distance for 6061 with 1-hr delay .................... .48 4.14. Variation ofYS with Jominy Distance for 6061 with 1-hr delay .................... .48 4.15. Variation ofUTS with Jominy Distance for 6061 with 120-hr delay ................ .49 4.16. Variation ofYS with Jominy Distance for 6061 with 120-hr delay ................. .49 4.17. Variation ofUTS with Jominy distance for A356 with 1-hr delay .................... 52 4.18. Variation ofYS with Jominy distance for A356 with 1-hr delay ..................... 52 4.19. Variation of UTS with Jominy distance for A356 with 120-hr delay ................. 53 4.20. Variation ofYS with Jominy distance for A356 with 120-hr delay .................. 53 4.21. Variation of UTS with Jominy distance for with 8319 1-hr delay .................... 54 4.22. Variation ofYS with Jominy distance for 8319 with 1-hr delay ..................... 54 4.23. Variation ofUTS with Jominy distance for 8319 with 120-hr delay ................. 55 4.24. Variation ofYS with Jominy distance for 8319 with 120-hr delay .................. 55 4.25. C-curve for 7075 T6 temper. .............................................................. 56 4.26. C-curve for 6061 T6 temper. ............................................................... 57
Description: