MATHEMATICS RESEARCH DEVELOPMENTS Q M UATERNION ATRIX C OMPUTATIONS No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. M R ATHEMATICS ESEARCH D EVELOPMENTS Additional books and e-books in this series can be found on Nova’s website under the Series tab. MATHEMATICS RESEARCH DEVELOPMENTS Q M UATERNION ATRIX C OMPUTATIONS MUSHENG WEI YING LI FENGXIA ZHANG AND JIANLI ZHAO Copyright © 2018 by Nova Science Publishers, Inc. All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without the written permission of the Publisher. We have partnered with Copyright Clearance Center to make it easy for you to obtain permissions to reuse content from this publication. Simply navigate to this publication’s page on Nova’s website and locate the “Get Permission” button below the title description. This button is linked directly to the title’s permission page on copyright.com. Alternatively, you can visit copyright.com and search by title, ISBN, or ISSN. For further questions about using the service on copyright.com, please contact: Copyright Clearance Center Phone: +1-(978) 750-8400 Fax: +1-(978) 750-4470 E-mail: [email protected]. NOTICE TO THE READER The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained in this book. The Publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or in part, from the readers’ use of, or reliance upon, this material. Any parts of this book based on government reports are so indicated and copyright is claimed for those parts to the extent applicable to compilations of such works. Independent verification should be sought for any data, advice or recommendations contained in this book. In addition, no responsibility is assumed by the publisher for any injury and/or damage to persons or property arising from any methods, products, instructions, ideas or otherwise contained in this publication. This publication is designed to provide accurate and authoritative information with regard to the subject matter covered herein. It is sold with the clear understanding that the Publisher is not engaged in rendering legal or any other professional services. If legal or any other expert assistance is required, the services of a competent person should be sought. FROM A DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS. Additional color graphics may be available in the e-book version of this book. Library of Congress Cataloging-in-Publication Data ISBN: (cid:28)(cid:26)(cid:27)(cid:16)(cid:20)(cid:16)(cid:24)(cid:22)(cid:25)(cid:20)(cid:23)(cid:16)(cid:20)(cid:21)(cid:21)(cid:16)(cid:20)(cid:3)(cid:11)(cid:72)(cid:37)(cid:82)(cid:82)(cid:78)(cid:12) Published by Nova Science Publishers, Inc. † New York Contents Preface ix Acknowledgments xi Notations xiii 1 Preliminaries 1 1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3. QuaternionMatrices . . . . . . . . . . . . . . . . . . . . . . . 4 1.4. EigenvalueProblem . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5. Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.1. VectorNorms . . . . . . . . . . . . . . . . . . . . . . 14 1.5.2. MatrixNorms . . . . . . . . . . . . . . . . . . . . . . 17 1.6. GeneralizedInverses . . . . . . . . . . . . . . . . . . . . . . . 23 1.7. Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.7.1. IdempotentMatricesandProjections. . . . . . . . . . . 26 1.7.2. OrthogonalProjections . . . . . . . . . . . . . . . . . . 29 1.7.3. GeometricMeaningsofAA† andA†A . . . . . . . . . . 30 1.8. PropertiesofRealRepresentationMatrices . . . . . . . . . . . 31 2 ComputingMatrixDecompositions 35 2.1. ElementaryMatrices . . . . . . . . . . . . . . . . . . . . . . . 36 2.2. TheQuaternionLUDecomposition . . . . . . . . . . . . . . . 45 2.3. TheQuaternionLDLH andCholesky Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4. TheQuaternionQRDecomposition . . . . . . . . . . . . . . . 58 vi Contents 2.4.1. TheQuaternionHouseholderQRD . . . . . . . . . . . 59 2.4.2. TheGivensQRD . . . . . . . . . . . . . . . . . . . . . 66 2.4.3. TheModifiedGram-SchimitScheme . . . . . . . . . . 67 2.4.4. CompleteOrthogonalDecomposition . . . . . . . . . . 69 2.5. TheQuaternionSVD . . . . . . . . . . . . . . . . . . . . . . . 69 3 LinearSystemandGeneralizedLeastSquaresProblems 79 3.1. LinearSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.2. TheLinearLeastSquaresProblem . . . . . . . . . . . . . . . . 82 3.2.1. TheLSProblemandItsEquivalentProblems . . . . . . 82 3.2.2. TheRegularizationoftheLSProblem . . . . . . . . . . 85 3.2.3. SomeMatrixEquations . . . . . . . . . . . . . . . . . 87 3.3. TheTotalLeastSquaresProblem . . . . . . . . . . . . . . . . . 92 3.4. TheEqualityConstrainedLeastSquaresProblem . . . . . . . . 96 4 DirectMethodsforSolvingLinearSystemand GeneralizedLSProblems 103 4.1. DirectMethodsforLinearSystem . . . . . . . . . . . . . . . . 104 4.2. DirectMethodsfortheLSProblem. . . . . . . . . . . . . . . . 105 4.3. DirectMethodsfortheTLSProblem . . . . . . . . . . . . . . . 107 4.4. DirectMethodsfortheLSEProblem . . . . . . . . . . . . . . . 108 4.5. SomeMatrixEquations . . . . . . . . . . . . . . . . . . . . . . 111 5 IterativeMethodsforSolvingLinearSystemand GeneralizedLSProblems 119 5.1. BasicKnowledge . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.1.1. TheChebyshevPolynomials . . . . . . . . . . . . . . . 120 5.1.2. The Range of Eigenvaluesof Real Symmetric Tridiag- onalMatrices . . . . . . . . . . . . . . . . . . . . . . . 121 5.2. IterativeMethodsforLinearSystem . . . . . . . . . . . . . . . 122 5.2.1. BasicTheoryofSplittingIterativeMethod . . . . . . . 122 5.2.2. TheKrylovSubspaceMethods . . . . . . . . . . . . . . 132 5.3. IterativeMethodsfortheLSProblem . . . . . . . . . . . . . . 137 5.3.1. SplittingIterativeMethods . . . . . . . . . . . . . . . . 138 5.3.2. TheKrylovSubspaceMethods . . . . . . . . . . . . . . 143 5.3.3. Preconditioning Hermitian-Skew Hermitian Splitting IterationMethods . . . . . . . . . . . . . . . . . . . . . 149 Contents vii 5.4. IterativeMethodsfortheTLSProblem . . . . . . . . . . . . . . 151 5.4.1. ThePartialSVDMethod . . . . . . . . . . . . . . . . . 151 5.4.2. BidiagonalizationMethod . . . . . . . . . . . . . . . . 152 5.5. SomeMatrixEquations . . . . . . . . . . . . . . . . . . . . . . 154 6 ComputationsofQuaternionEigenvalueProblems 157 6.1. QuaternionHermitianRightEigenvalueProblem . . . . . . . . 158 6.1.1. ThePowerMethodandInversePowerMethodfor QuaternionHermitianRightEigenvalueProblem . . . . 158 6.1.2. RealStructure-PreservingAlgorithmofHermitianQR AlgorithmforHermitianRightEigenvalueProblem . . 164 6.1.3. Real Structure-Preserving Algorithm of the Jacobi MethodforHermitianRightEigenvalueProblem . . . . 168 6.1.4. SubspaceMethods . . . . . . . . . . . . . . . . . . . . 175 6.2. QuaternionNon-HermitianRightEigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.2.1. ThePowerMethodandtheInversePowerMethod . . . 177 6.2.2. TheQuaternionQRAlgorithmforQuaternion Non-HermitianRightEigenvalueProblem . . . . . . . . 185 References 189 AbouttheAuthors 207 Index 209 Preface In 1843, Sir William Rowan Hamilton (1805-1865) introduced quaternion as he tried to extend complex numbers to higher spatial dimensions, and then he spenttherestofhislifeobsessedwiththemandtheirapplications.Nevertheless he probably never thoughtthatone day in the future the quaternionhe had in- ventedwouldbeusedinquaternionicquantummechanics(qQM),colorimage processingandmanyotherfields. About 100 years later, Finkelstein et al built the foundationsof qQM and gaugetheories. Theirfundamentalworksledtoarenewedinterestinalgebriza- tionandgeometrizationofphysicaltheoriesbynon-commutativefields. Among the numerous references on this subject, the important paper of Horwitz and Biedenharn showed that the assumption of a complex projection of the scalar product, also called complex geometry Rembielinski,permits the definitionof a suitabletensor product between single-particle quaternionicwave functions. Now quaternionbecomes to playan importantrole in many applicationfields, such as special relativity, group representations, non-relativistic and relativis- tic dynamics, field theory, Lagrangian formalism, electro weak model, grand unificationtheoriesandsoon. In 1996, Sangwine proposed to encode three channel components of an RGB image on the three imaginary parts of a pure quaternion. Thus, a color image can be represented by a pure imaginary quaternion matrix. Since then, quaternion representation of a color image has attracted great attention. With therapiddevelopmentofapplicationsintheabovedisciplines,itisnecessaryto furtherstudynumericalcomputationsofquaternionmatrices. SangwineandLe BihanestablishedaplausibleQuaternionToolboxsoftwareforMatlab. Duringtherecentyears,therearetwokindsofmethodsproposedforquater- nionmatrixcomputationsbasedonrealarithmeticoperations. Thefirstkindof methodistodirectlyperform computationsonthereal representationmatrices