ebook img

Quaternion algebras and the generalized Fibonacci-Lucas quaternions PDF

0.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quaternion algebras and the generalized Fibonacci-Lucas quaternions

Quaternion algebras and the generalized Fibonacci-Lucas quaternions 5 1 0 Cristina FLAUT and Diana SAVIN 2 r a M Abstract. In this paper, we introduce the generalized Fibonacci-Lucas quater- nions and we prove that the set of these elements is an order–in the sense of ring 6 1 theory– of a quaternion algebra. Moreover, we investigate some properties of these elements. ] A Key Words: quaternion algebras; Fibonacci numbers; Lucas numbers. R . 2000 AMS Subject Classification: 15A24,15A06,16G30,1R52,11R37, h 11B39. t a m [ 1. Preliminaries 2 v 2 Let (fn)n 0 be the Fibonacci sequence: 7 ≥ 7 f =0;f =1;f =f +f , n≥2 0 1 n n 1 n 2 1 − − 0 and (l ) be the Lucas sequence: . n n 0 1 ≥ 0 l =2;f =1;l =l +l , n≥2 0 1 n n 1 n 2 5 − − 1 In the paper [Ho; 61], A. F. Horadam generalized Fibonacci numbers in the : v following way: i h =p,h =q,h =h +h , n≥2, X 0 1 n n 1 n 2 − − r where p and q are arbitrary integer numbers. a Inthepaper[Ho;63],A.F.HoradamintroducedtheFibonacciquaternionsand generalized Fibonacci quaternions. In their work [Fl, Sh; 12], C. Flaut and V. Shpakivskyi and later in the paper [Ak, Ko, To; 14], M. Akyigit, H. H Kosal, M. Tosun found some properties of the generalized Fibonacci quaternions. In the papers [Fl, Sa; 14] and [Fl, Sa, Io; 13], the authors gave the definitions of theFibonaccisymbolelementsandLucassymbolelementsandtheydetermined many properties of these elements. All these elements determine a Z-module structure. Inthispaper,wedefinethegeneralizedFibonacci-Lucasnumbersandthegener- alized Fibonacci-Lucas quaternions and we provethat, in the second case, they determine an order of a quaternion algebra. 1 For other results regardind above notions, the reader is referred to [Fl; 06], [Sa, Fl, Ci; 09], [Fl, Sh; 13(1)], [Fl, Sa; 14], [Fl, Sa; 15],[Fl, St; 09]. 2. Properties of the Fibonacci and Lucas numbers From [Fib.], the following properties of Fibonacci numbers are known: Proposition 2.1. Let (f ) be the Fibonacci sequence and let (l ) n n 0 n n 0 ≥ ≥ be the Lucas sequence. Therefore the following properties hold: i) f2+f2 =f ,∀ n∈N; n n+1 2n+1 ii) f2 −f2 =f ,∀ n∈N ; n+1 n 1 2n ∗ − iii) l2 −f2 =4f f ,∀ n∈N ; n n n 1 n+1 ∗ − iv) l2 +l2 =5f ,∀ n∈N; n n+1 2n+1 v) l2 =l +2(−1)n,∀ n∈N ; n 2n ∗ vi) f +f =l ,∀ n∈N ; n+1 n 1 n ∗ − vii) l +l =5f ,∀ n∈N; n n+2 n+1 viii) f +f =3f ,∀ n∈N; n n+4 n+2 ix) f l =f +(−1)m+1·f ,∀ m,p∈N; m m+p 2m+p p x) f l =f +(−1)m·f ,∀ m,p∈N; m+p m 2m+p p xi) 1 f f = l +(−1)m+1·l ,∀ m,p∈N; m m+p 2m+p p 5 (cid:16) (cid:17) xii) l l +5f f =2l ,∀ m,p∈N. m p m p m+p xiii) f are even numbers if and only if n≡0 (mod 3). n 2 In the next proposition, we will give other elementary properties of the Fi- bonacciandLucasnumbers. Thesepropertieswillbenecessaryinthefollowing. Proposition 2.2. Let (f ) be the Fibonacci sequence and (l ) be the n n 0 n n 0 ≥ ≥ Lucas sequence Then we have that l l =l +(−1)m·l ,∀ m,p∈N. m m+p 2m+p p Proof. If we denote α = 1+√5 and β = 1 √5, using Binet’s formula, we have 2 −2 fn = ααn−ββn = √15(αn−βn), ∀ n∈N and ln =αn+βn, ∀ n∈N. i) Let m−,p∈N, p≤m, therefore we have l l −5f f =(αm+βm)·(αp+βp)−(αm−βm)·(αp−βp)= m p m p =2αpβp αm p+βm p =2(−1)p·l . − − m p − p It results lmlp−5fmfp =2(cid:0)(−1) ·lm p. A(cid:1)dding this equality with the equality − p from Proposition 2.1 (xii)) , we obtain l l = l +(−1) ·l ,∀ m,p ∈ m p m+p m p N,p≤m. From here, it results that l l =l +(−1)m·l ,∀−m,p∈N.(cid:3) m m+p 2m+p p 3. Generalized Fibonacci-Lucas numbers and generalized Fibonacci- Lucas quaternions Letnbeanarbitrarypositiveintegerandp,qbetwoarbitraryintegers. The sequence g (n≥1), where n g =pf +ql , n≥0 n+1 n n+1 is called the generalized Fibonacci-Lucas numbers. To emphasize the integer p and q, in the following we will use the notation gp,q n instead of g . n Let H(α,β) be the generalized real quaternion algebra, the algebra of the elements of the form a=a ·1+a i+a j+a k, where a ∈R,i2 =α,j2 =β, 1 2 3 4 i k = ij = −ji. We denote by t(a) and n(a) the trace and the norm of a real quaterniona.Thenormofageneralizedquaternionhasthefollowingexpression n(a)=a2−αa2−βa2+αβa2 andt(a)=2a .Itisknownthatfora∈H(α,β), 1 2 3 4 1 we have a2−t(a)a+n(a) = 0. The quaternion algebra H(α,β) is a division algebra if for all a ∈ H(α,β), a 6= 0 we have n(a) 6= 0, otherwise H(α,β) is called a split algebra. Let H (α,β) be the generalized quaternion algebra over the rational field. Q We define the n-th generalized Fibonacci-Lucas quaternion to be the element of the form Gp,q =gp,q·1+gp,q ·i+gp,q ·j+gp,q ·k, n n n+1 n+2 n+3 where i2 =α,j2 =β, k =ij =−ji. 3 In the following proposition, for α = −1 and β = p, we compute the norm for the n-th generalized Fibonacci-Lucas quaternions. Proposition 3.1. Let n,p be two arbitrary positive integers and q be an arbitrary integer. Let Gp,q be the n-th generalized Fibonacci-Lucas quaternion. n Then the norm of the element Gp,q in the quaternion algebra H (−1,p)has the n Q form i) n(Gp,q)= p3+p2+8p2q+15pq2+2pq f + n 2n 1 − + −3p3(cid:0)+5q2−22p2q−40pq2+2pq (cid:1)f ; 2n+1 or (cid:0) (cid:1) ii) n(Gp,q)=ga,b, n 2n where a=4p3+p2+30p2q+55pq2−5q2and b=−3p3+5q2−22p2q−40pq2+2pq. Proof. i) n(Gp,q)=Gp,qGp,q =(gp,q)2+ gp,q 2−p gp,q 2−p gp,q 2 = n n n n n+1 n+2 n+3 =(pf +ql )2+(pf +ql )2−p(cid:0)(pf (cid:1) +ql(cid:0) )2−(cid:1) p(pf(cid:0) +(cid:1)ql )2 = n 1 n n n+1 n+1 n+2 n+2 n+3 − =p2 f2 +f2 −p3 f2 +f2 +q2 l2 +l2 −pq2 l2 +l2 + n 1 n n+1 n+2 n n+1 n+2 n+3 − (cid:0) +2pq(cid:1)(f l(cid:0) +f l )−(cid:1)2p2q((cid:0)f l (cid:1)+f l(cid:0) ) ((cid:1)3.1). n 1 n n n+1 n+1 n+2 n+2 n+3 − Using Proposition 2.1 (i; vi;viii; ix) and the relation (3.1), we obtain n(Gp,q)=p2f +5q2f +2pq f +(−1)n+f +(−1)n+1 − n 2n 1 2n+1 2n 1 2n+1 − − h i −p3f −5pq2f −2p2q f +(−1)n+2+f +(−1)n+3 = 2n+3 2n+5 2n+3 2n+5 h i =p2f +5q2f −p3f −5pq2f +2pql −2p2ql . 2n 1 2n+1 2n+3 2n+5 2n 2n+4 − From Fibonacci recurrence, we obtain f =3f −f ,f =8f −3f . 2n+3 2n+1 2n 1 2n+5 2n+1 2n 1 − − Usingtheseequalities,Proposition2.1(vi)andFibonaccirecurrence,weobtain l =f +f and l =f +f =11f −4f . 2n 2n+1 2n 1 2n+4 2n+3 2n+5 2n+1 2n 1 − − It results n(Gp,q)= p3+p2+8p2q+15pq2+2pq f + n 2n 1 − + −3p3(cid:0)+5q2−22p2q−40pq2+2pq (cid:1)f . 2n+1 ii) Using Propositio(cid:0)n 2.1 (vi), last equality becomes (cid:1) n(Gp,q)= 4p3+p2+30p2q+55pq2−5q2 f + n 2n 1 − + −3(cid:0)p3+5q2−22p2q−40pq2+2pq (cid:1)l . 2n (cid:0) (cid:1) 4 If we denote a=4p3+p2+30p2q+55pq2−5q2 and b=−3p3+5q2−22p2q− 40pq2+2pq,thelastequalityisequivalentwithn(Gp,q)=af +bl =ga,b.(cid:3) n 2n 1 2n 2n − Let Abe a Noetherianintegraldomainwith the field ofthe fractions K and let H (α,β) be the generalized quaternion algebra. We recall that O is an K order in H (α,β) if O ⊆ H (α,β) is an A-lattice of H (α,β) (i.e a finitely K K K generated A submodule of H (α,β)) which is also a subring of H (α,β) (see K K [Vo; 10]). In the following, we will built an order of a quaternion algebras using the gen- eralized Fibonacci-Lucas quaternions. Also we will prove that Fibonacci-Lucas quaternions can have an algebra structure over Q. For this, we make the fol- lowing remarks. Remark 3.1. Let nbean arbitrary positive integer and p,qbetwoarbitrary integers. Let (gp,q) be the generalized Fibonacci-Lucas numbers. Then n n 1 ≥ pf +ql =gp,q+gp,0 ,∀ n∈N . n+1 n n n+1 ∗ Proof. pf +ql =pf +ql +pf =gp,q+pf =gp,q+gp,o . n+1 n n 1 n n n n n n+1 − (cid:3) Remark 3.2. Let n be an arbitrary positive integer and p,q be two arbi- trary integers. Let (gp,q) be the generalized Fibonacci-Lucas numbers and n n 1 (Gp,q) be the generalized≥Fibonacci-Lucas quaternion elements. Then: n n 1 ≥ Gp,q =0 if and only if p=q =0. n Proof. ” ⇐” It is trivial. ” ⇒” If Gp,q =0, since {1,i,j,k} is a basis in H (α,β), we obtain that gp,q = n Q n gp,q = gp,q = gp,q = 0. It results gp,q = gp,q − gp,q = 0, ..., gp,q = 0, n+1 n+2 n+3 n 1 n+1 n 2 gp,q = 0. But gp,q = pf +ql = 2q, there−fore q = 0. From gp,q = 0, we obtain 1 1 0 1 2 p=0.(cid:3) Theorem 3.1. Let M be the set n M = 5Gpi,qi|n∈N ,p ,q ∈Z,(∀)i=1,n ∪{1}. ni ∗ i i ( ) i=1 X 1) The set M has a ring structurewith quaternions addition and multiplication. 2) The set M is an order of the quaternion algebra H (α,β). Q 3)Theset M = n 5Gp′i,qi′|n∈N ,p ,q ∈Q,(∀)i=1,n ∪{1}isaQ−algebra. ′ ni ∗ ′i i′ (cid:26)i=1 (cid:27) P Proof. 2) First, we remark that 0∈M (using Remark 3.2). Now we prove that M is a Z− submodule of H (α,β). Q ′ ′ Let n,m∈N , a,b,p,q,p ,q ∈Z. It is easy to prove that ∗ ′ ′ ′ ′ agp,q+bgp ,q =gap,aq+gbp ,bq . n m n m 5 This implies that ′ ′ ′ ′ aGp,q+bGp ,q =Gap,aq +Gbp ,bq . n m n m From here, we get immediately that M is a Z− submodule of the quaternion algebra H (α,β). Since {1,i,j,k} is a basis for this submodule, it results that Q M is a free Z− module of rank 4. Now, we prove that M is a subring of H (α,β). It is enough to show that Q ′ ′ 5Gp,q·5Gp ,q ∈M. For this, if m<n, we calculate n m 5gp,q·5gp′,q′ =5(pf +ql )·5 p′f +q′l = n m n 1 n m 1 m − − (cid:16) (cid:17) ′ ′ ′ ′ =25pp f f +25pq f l +25p qf l +25qq l l (3.2). n 1 m 1 n 1 m m 1 n n m − − − − Using Proposition2.1 (ix, x, xi), Proposition2.2 , Remark 3.1 and the equality (3.2) we obtain: 5gp,q·5gp′,q′ =5pp′[l +(−1)m·l ]+25pq′[f +(−1)m·f ]+ n m m+n 2 n m m+n 1 n m 1 − − − − − ′ m ′ m +25p q[f +(−1) ·f ]+25qq [l +(−1) ·l ]= m+n 1 n m+1 m+n n m − − − ′ ′ ′ m ′ m =5 pp l +5p qf +5 5p q(−1) ·f +pp (−1) ·l + m+n 2 m+n 1 n m+1 n m − − − − (cid:16) (cid:17) h i ′ ′ ′ m ′ m +25 pq f +qq l +25 pq ·(−1) ·f +qq ·(−1) ·l = m+n 1 m+n n m 1 n m − − − − (cid:16) =5gm5p+′qn,pp2′ +5gm5p+′qn(cid:17),01+5hgn5p′mq·(−1)m,pp′·(−1)m +5gn5p′mq·(+−11)m,0+ i − − − − +5gm5p+q′n,5qq′ +5gn5pqm′·(−1)m,5qq′·(−1)m. − ′ ′ Therefore, we obtain that 5Gp,q·5Gp ,q ∈M. n m From here, it results that M is an order of the quaternion algebra H (α,β). Q 1) and 3) are obviously.(cid:3) Remark 3.3. For α = β = −1, we have that M is included in the set of Hurwitz quaternions, 1 H={q =a +a i+a j+a k ∈H (−1,−1),a ,a ,a ,a ∈Z or Z+ }, 1 2 3 4 Q 1 2 3 4 2 which is a maximal order in H (−1,−1). Q From [Lam; 04], [Sa; 14], it is know that if p is an odd prime positive in- teger, the algebra H (−1,p) is a split algebra if and only if p ≡ 1 (mod 4). Q In the following, we will show that there are an infinite numbers of generalized Fibonacci-Lucas quaternion elements which are invertible in this algebra. Proposition 3.2. Let n be an arbitrary positive integer. Let (f ) be n n 0 ≥ the Fibonacci sequence and (l ) be the Lucas sequence. Let p be an odd n n 0 ≥ 6 prime positive integer, p≡1 (mod 4), q be an arbitrary integer. Let Gp,q be the n n-th generalized Fibonacci-Lucas quaternion and H (−1,p) be the quaternion Q algebra. The following statements are true: i) n(Gp,q)6=0, (∀) (n,q)∈N ×N; n ∗ ii) If p=5, then n G5,q 6=0, (∀) (n,q)∈N ×Z , (n,q)6=(1,−2); n ∗ iii) if p>5 and n≡0 (mod 3), then n(Gp,q)6=0−, (∀) q∈Z. (cid:0) (cid:1) n Proof. We know that an element x 6= 0 from a quaternion algebra is invertible in this algebra if the norm n(x)6=0. i) From Proposition 3.1, we know that n(Gp,q)= p3+p2+8p2q+15pq2+2pq f + n 2n 1 − + −3p3(cid:0)+5q2−22p2q−40pq2+2pq (cid:1)f (3.3). 2n+1 If q ∈N, since p∈N∗(cid:0), it results (cid:1) p3+p2+8p2q+15pq2+2pq <3p3−5q2+22p2q+40pq2−2pq. Using the inequality f <f , we obtain that n(Gp,q)<0. So n(Gp,q)6= 2n 1 2n+1 n n − 0. In the case when q ∈Z , if there exist generalized Fibonacci-Lucas quaternion elements with n(Gp,q)−=0, using relation (3.3), we obtain that n p p2+p+8pq+15q2+2q f + −3p2−22pq−40q2+2q f = 2n 1 2n+1 − (cid:2)(cid:0) (cid:1) =−5q2f(cid:0) , (cid:1) (cid:3)(3.4). 2n+1 therefore,p|5q2f .Butweknowfromthehypothesisthatpisaprimepositive 2n+1 integer, p≡1 (mod 4), so we consider two cases: ii) The case p = 5. Using relation (3.3) and making some calculations we get that n G5,q =0⇔ 5q2+10q+30 f − 39q2+108q+75 f =0 (3.5). n 2n 1 2n+1 − (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) Therefore 0<5q2+10q+30<39q2+108q+75, (∀)q ∈Z,q 6=−2;−1. Using the fact that f <f , (∀)n∈N , it results 2n 1 2n+1 ∗ − n G5,q <0 (∀)n∈N , (∀)q ∈Z ,q 6=−2;−1. n ∗ − Inthefollowing,w(cid:0)ewil(cid:1)lfindiftheequationsn G5, 1 =0respectivelyn G5, 2 = n− n− 0 have solutions for n∈N . ∗ (cid:0) (cid:1) (cid:0) (cid:1) Using the relation (3.5) and the Fibonacci recurrence, we have n G5, 1 =0⇔25f −6f =0⇔7f +6f =0. n− 2n 1 2n+1 2n 1 2n 3 − − − (cid:0) (cid:1) 7 Since f ,f > 0 it results that does not exist n∈N such that 7f + 2n 1 2n 3 ∗ 2n 1 − − − 6f =0. 2n 3 − Using relation (3.5) and the Fibonacci recurrence, it results n G5n,−2 =0⇔30f2n 1−15f2n+1 =0⇔f2n 2 =0⇔n=1. − − iii) when (cid:0)p > 5,(cid:1)since n ≡ 0 ( mod 3) it results that 2n−1 ≡ 2 ( mod 3) and 2n+1≡1 ( mod 3). Applying Applying Proposition 2.1 (xiii), we obtain that f and f are odd numbers. Since p is an odd number, we obtain that 2n 1 2n+1 − the equality (3.4) cannot be held (is easy to prove that the equality (3.4) holds only when f is an even number or f is an even number).(cid:3) 2n 1 2n+1 − For a∈H (α,β). The centralizer of the element a is Q C(a)={x∈H (α,β) / ax=xa}. Q From [Fl; 01], Proposition 2.13, we know that the equation ax=bx,a,b∈H (α,β), (3.6.) K where K is anarbitraryfield of charK 6=0,a,b∈/ K,a6=b, has the solutions of the form x=λ (a-t(a)+b-t(b))+λ (n(a-t(a))-(a-t(a))(b-t(b))),λ ,λ ∈K (3.7.) 1 2 1 2 ifH (α,β)is adivisionquaternionalgebraorifH (α,β)is asplitquaternion K K algebra and n(a)6=0,n(b)6=0. Proposition 3.3. Let n be a positive integer,n ≡ 0 (mod 3). Let (f ) n n 0 ≥ be the Fibonacci sequence and (l ) be the Lucas sequence. Let p be an odd n n 0 ≥ prime positive integer, p≡1 (mod 4), q be an arbitrary integer. Therefore, the centralizer of the element Gp,q ∈ H (−1,p) with p > 5, q arbitrary integer is n Q the set C(Gp,q)={Gγ,δ+Λ,Λ∈Q}, n n w2λheAre,γwi=th2λλ1,pλ,δ =∈Q2λa1nq,dΛA==gn−2p22λ1(p−,−12)λn1+q+2gq222nλ(2−a−14)λn2p+q,22λp2qb−(−2λ12)qn2-.2λ2p52l2n−2- 2 1 2 5 Proof. Since C(Gp,q)={x∈H (−1,p) / Gp,qx=xGp,q}, using relations n Q n n (3.6) and (3.7) for a = b, we obtain that the equation Gp,qx = xGp,q has the n n solutions of the form x=2λ (Gp,q-t(Gp,q))+2λ n(Gp,q-t(Gp,q)),λ ,λ ∈Q. (3.8.) 1 n n 2 n n 1 2 For Gp,q =gp,q·1+gp,q ·i+gp,q ·j+gp,q ·k, we have t(Gp,q)=gp,q and n n n+1 n+2 n+3 n n n(Gp,q) = ga,b, with a and b as in Proposition 3.1. From here, we have that n 2n n(Gp,q-t(Gp,q)) = ga,b−gp,q = ga,b−(pf +ql )2. Using Proposition 2.1, n n 2n n 2n n 1 n − relations v), ix) and xii), it results n(Gp,q-t(Gp,q))=ga,b-p2(l -(−1)nl )-q2(l +2(−1)n)-2pq(f +(−1)n)= n n 2n 5 2n−2 0 2n 2n−1 8 =ga,b− p2l − 2p2(−1)n−q2l −2q2(−1)n−2pqf −2pq(−1)n = ===relggga2222aaatnnnn−−,ibo22n+ppqq(,,g3bb52−−−.8n2qq2)p22n,q−−−,w−2peq5p2522ol2−lb2ntn5−ap−5i22n2−l2−xnA−=,225pw22−hλ(−e12r5p1(e2G)2A(nnpn−,−=q1-)g2n2npq5p,2−q2)((+−2−q2112λ))(nn2−+−1g2)22aqnnp−2q−2(p(−q2−2,1pnb1−)q−)nq1(n+2−=−21p)npq52(=l−2n1−)n2−.UAsing= =Q.G(cid:3)n2λ1p,2λ1q+gn−2λ1p,−2λ1q+g22nλ2a−4λ2pq,2λ2b−2λ2q(cid:16)2−2λ2p52l2n−2−2λ2A,λ1,λ2(cid:17)∈ Conclusions. Inthis paper,startingfromaspecialsetofelements,namely Fibonacci-Lucas quaternions, we proved that this set is an order –in the sense of ring theory– of the quaternion algebra H (α,β) and it can have an algebra Q structure overQ. It willbe very interestingto find allproperties ofthis algebra and to find conditions under which it is a division algebra or a split algebra. Acknowledgments The authors thank ProfessorRafal Abl amowicz and anonymous referees for their comments, suggestions and ideas which helped us to improve this paper. References [Ak, Ko, To; 14] M. Akyigit, HH Kosal, M. Tosun, Fibonacci Generalized Quaternions , Adv. Appl. Clifford Algebras, vol. 24, issue: 3 (2014), p. 631- 641 [Fl, Sa; 14]C. Flaut, D. Savin, Some properties of the symbol algebras of degree 3, Math. Reports, vol. 16(66)(3)(2014), p.443-463. [Fl, Sa, Io; 13] C. Flaut, D. Savin, G. Iorgulescu, Some properties of Fibonacci and Lucas symbol elements, Journal of Mathematical Sciences: Advances and Applications, vol. 20 (2013), p. 37-43 [Fl, Sh; 13] C. Flaut, V. Shpakivskyi, On Generalized Fibonacci Quaternions and Fibonacci-Narayana Quaternions, accepted in Adv. Appl. Clifford Alge- bras, vol. 23 issue 3 (2013), p. 673-688. [Fl, Sh; 13(1)] C. Flaut, V. Shpakivskyi, Real matrix representations for the complex quaternions, Adv. Appl. Clifford Algebras, 23(3)(2013), 657-671. [Fl; 06] C. Flaut, Divison algebras with dimension 2ˆt, t∈N, An. St. Univ. Ovidius Constanta, 13(2)(2006), 31-38. [Fl; 01] C. Flaut, Some equations in algebras obtained by the Cayley-Dickson process, An. St. Univ. Ovidius Constanta, 9(2)(2001), 45-68. [Fl, Sa; 15] C. Flaut, D. Savin, Some examples of division symbol algebras of degree 3 and 5, accepted in Carpathian J Math. (arXiv:1310.1383); [Fl, Sa; 14] C. Flaut, D. Savin, About quaternion algebras and symbol algebras, Bulletin of the Transilvania University of Brasov, 7(2)(56)(2014), 59-64. [Fl, St; 09] C. Flaut, M. S¸tef˜anescu, Some equations over generalized quater- nion and octonion division algebras, Bull. Math. Soc. Sci. Math. Roumanie, 9 52(100), no. 4 (2009), 427-439. [Ha; 00] M. Hazewinkel, Handbook of Algebra, Vol. 2, North Holland, Amster- dam, 2000. [Ho; 61] A. F. Horadam, A Generalized Fibonacci Sequence, Amer. Math. Monthly, 68(1961), 455-459. [Ho; 63] A. F. Horadam, Complex Fibonacci Numbers and Fibonacci Quater- nions, Amer. Math. Monthly, 70(1963), 289-291. [Lam; 04] T. Y. Lam, Introduction to Quadratic Forms over Fields, American Mathematical Society, 2004. [Sa; 14] D. Savin, About some split central simple algebras, An. Stiin. Univ. ”‘Ovidius” Constanta, Ser. Mat, 22 (1) (2014), p. 263-272. [Sa, Fl, Ci; 09] D. Savin, C. Flaut, C. Ciobanu, Some properties of the symbol algebras, Carpathian Journal of Mathematics, 25(2)(2009), p. 239-245 [Vo;10]J.Voight,TheArithmeticofQuaternionAlgebras. Availableontheau- thor’swebsite: http://www.math.dartmouth.edu/jvoight/crmquat/book/quat- modforms-041310.pdf,2010. [Fib.] http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fib.html Cristina FLAUT Faculty of Mathematics and Computer Science, OvidiusUniversity, Bd. Mamaia 124, 900527, CONSTANTA,ROMANIA http://cristinaflaut.wikispaces.com/; http://www.univ-ovidius.ro/math/ e-mail: cfl[email protected];cristina fl[email protected] Diana SAVIN Faculty of Mathematics and Computer Science, OvidiusUniversity, Bd. Mamaia 124, 900527, CONSTANTA,ROMANIA http://www.univ-ovidius.ro/math/ e-mail: [email protected], [email protected] 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.