ebook img

Quasiparticle states driven by a scattering on the preformed electron pairs PDF

0.38 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quasiparticle states driven by a scattering on the preformed electron pairs

CondensedMatterPhysics,2016,Vol.19,No1,13701:1–11 DOI:10.5488/CMP.19.13701 http://www.icmp.lviv.ua/journal Quasiparticle states driven by a scattering on the preformed electron pairs ∗ 6 1 T.Domański 0 2 InstituteofPhysics,M.Curie-SkłodowskaUniversity,20-031Lublin,Poland r ReceivedNovember13,2015,infinalformNovember27,2015 a M Weanalyzeevolutionofthesingleparticleexcitationspectrumoftheunderdopedcupratesuperconductors neartheanti-nodalregion,consideringtemperaturesbelowandandabovethephasetransition.Weinspectthe 4 1 phenomenologicalself-energy that reproducesthe angle-resolved-photoemission-spectroscopy(ARPES) data and we show that above thecriticaltemperature,such procedureimpliesa transfer of thespectral weight ] from the Bogoliubov-typequasiparticlestowards the in-gap damped states. We also discuss some possible n microscopicargumentsexplainingthisprocess. o c Keywords:superconductingfluctutations,Bogoliubovquasiparticles,pseudogap - r p PACS:74.20.-z,74.20.Mn,74.40.+k u s . 1. Introduction t a m Superconductivity(i.e.,dissipationlessmotionofthechargecarriers)isobservedatsufficientlylow - temperatures,whenelectronsfromthevicinityoftheFermisurfaceareboundinthepairsandrespond d n collectively (ratherthanindividually) toanyexternalperturbationsuchaselectromagnetic field, pres- o sure,temperaturegradient,etc.Dependingonspecificmaterials,thepairingmechanismcanbedriven c by phonons (in classical superconductors), magnons (in heavy fermion compounds) or by the antifer- [ romagneticexchangeinteractionsoriginatingfromtheCoulomb repulsion(incuprateoxides).Inmost 2 cases,theelectronpairsareformedatthecriticalvalueTc,markingtheonsetofsuperconductivity.There v are,however,numerousexceptionstothisrule.Forinstance,inthecupratesuperconductors[1]orinthe 2 ultracoldfermionicgasses[2],suchpairspre-existwellaboveT .Tosomeextent,theirpresencecauses c 9 thepropertiesreminiscentofthesuperconductingstate. 5 1 EarlyevidenceforthepreformedpairsexistingaboveTc hasbeenindicatedinthemuonscattering 0 experiments[3].Lateron,theirexistencewassupportedbytheultrafast(tera-Hertz)opticalspectroscopy . [4,5]andthelargeNernsteffect[6,7].Spectroscopicsignaturesofthepreformedpairshavebeenalso 1 0 detecteddirectlyintheARPESmeasurementsonyttrium[8]andlanthanum[9]cuprateoxides,revealing 6 the Bogoliubov-type quasiparticle dispersion above T . Furthermore, the STM imaging provided clear c 1 fingerprintsofsuchdispersiveBogoliubovquasiparticles(bytheuniqueoctetpatterns)beingunchanged v: from temperatures deep in the superconducting region up to 1.5Tc [10].Superconducting fluctuations i aboveT havebeenalsoreportedbytheJosephson-liketunneling[11]andtheproximityeffectinduced X c inthenanosizemetallicslabsdepositedonLa2 xSrxCuO4[12].Morerecently,theresidualMeissnereffect r − a hasbeenexperimentallyobservedabovethetransitiontemperatureTcbythetorquemagnetometry[13] andothermeasurements[14,15].Additionalevidenceforthesuperconducting-likebehaviouraboveT c hasbeenseeninthehigh-resolutionARPESmeasurements[16],thesuperfulidfractionobservedinthe c-axis optical measurements Re{σ (ω)} [17], the Josephson spectroscopy for YBaCuO-LaSrCuO-YBaCuO c junctionusingLaSrCuOinthepseudogapstatewellaboveT [18],opticalconductanceinthepseudogap c stateofYBaCuOsuperconductor[19]andthephoto-enhancedantinodalconductivityinpseudogapstate ofthehighT superconductors[20]. c ∗ThisworkisdedicatedtoprofessorStefanSokołowskiontheoccasionofhis65-thbirthday. ©T.Domański,2016 13701-1 T.Domański PreformedpairsarecorrelatedaboveTc onlyonsomeshorttemporalτφ andspatiallφ scales[21– 23]. For this reason, the superconducting fluctuations are manifested in very peculiar way [24]. Their influenceonthesingleparticlespectrumismanifestedby:a)twoBogoliubov-typebranchesandb)addi- tionalin-gapstatesthatareover-damped(haveashortlife-time).Temperaturehasastrongeffectonthe transferofthespectralweightbetweentheseentities.Intheunderdopedcupratesuperconductors,such atransferisresponsibleforfilling-intheenergygap[16,25],insteadofclosingit(asintheclassicalsu- perconductors).Someearlyresultsconcerningsuperconductingfluctuationshavebeenknownforalong time[26,27],buttheyattracted muchmoreinterestinthecontextofcupratesuperconductors[26–36] andultracoldfermionsuperfluids[37,38]. Inthiswork,westudyqualitativechangeoverofthesingleparticleelectronicspectrumoftheunder- dopedcuprateoxidesfor temperaturesvarying frombelowT (inthesuperconducting state) toabove c T , where the preformed pairs are not long-range coherent. In the superconducting state, the usual c Bogoliubov-type quasiparticles are driven by the Bose-Einstein condensate of the (zero-momentum) Cooper pairs. Wefind that above T , the Bogoliubov quasiparticles are still preserved, but the scatter- c ingprocessesdrivenbythefinitemomentumpairscontributethein-gapstateswhoselife-timesubstan- tiallyincreaseswithincreasingtemperature.Wediscussthisprocessonthephenomenological aswell asmicroscopicarguments.Roughlyspeaking,afeedbackoftheelectronpairsontheunpairedelectrons resembles thelong-range translational and orientational orderthat develops between the amphiphilic particlesinpresenceoftheionsatsolidstatesurfacesstudiedbyS.Sokołowskiwithcoworkers[39]. 2. Microscopic formulation of the problem Toaccountforthecoherent/incoherentpairingweconsidertheHamiltonian 1 Hˆ =kX,σ¡εk−µ¢cˆk†σcˆkσ+N kX,k′,qVk,k′(q)cˆk†′↑cˆq†−k′↓cˆq−k↓cˆk↑ (2.1) describingthemobileelectronsofkineticenergyεk(whereµisthechemicalpotential)interactingviathe two-bodypotentialVk,k′(q).WeassumeaseparableformVk,k′=−g ηkηk′ ofthispairingpotential(with g 0). In the nearly two-dimensional cuprate superconductors with the prefactor ηk=>21 cos(akx)+cos(aky) (whereaistheunitlengthinCuO2planarstructure),suchpairingpotential inducesthed-wavesymmetryorderparameter[40,41]. £ ¤ TheHamiltonian(2.1)canberecastinamorecompactform,byintroducingthepairoperators 1 bˆq ηkcˆq k cˆk (2.2) = pN − ↓ ↑ k X andbˆq†=(bˆq)†,whenthetwo-bodyinteractionssimplifyto 1 N kX,k′,qVk,k′(q)cˆk†↑cˆq†−k↓cˆq−k′↓cˆk′↑=−Xq gbˆq†bˆq. (2.3) UsingtheHeisenbergequationofmotion( 1) ħ= d 1 idtcˆk↑= εk−µ cˆk↑−gηk pN q cˆq†−k↓bˆq (2.4) ¡ ¢ X weimmediatelynoticethatthesingle-particlepropertiesofthismodel(2.1): a) are characterized by the mixed particle and hole degrees of freedom (because the annihilation operatorscˆk↑coupletothecreationoperatorscˆq†−k↓), b) dependonthepairingfieldbˆq(appearingintheequationofmotion ddtcˆk ). ↑ Boththesefeaturesmanifestthemselvesinthesuperconductingstate,whenthereexiststheBose-Einstein (BE) condensate bˆq 0 ,0 of the Cooper pairs. They also survive in the normal state, as long as the 〈 = 〉 preformed(finite-momentum)pairsarepresentbelowthesamecharacteristictemperatureT∗marking anonsetoftheelectronpairing.Inthenextsectionweexploretheirroleinthesuperconductingstate (T Tc)andinthepseudogapregion(Tc T T∗). É < < 13701-2 Quasiparticlestatesduetopreformedpairs 3. Pairs as the scattering centers TheHeisenbergequationofmotion(2.4)indicatesthattheelectronicstatesareaffectedbythepairing ˆ fieldbq.LetusconsiderthegenericconsequencesofsuchAndreev-typescattering,separatelyconsider- ing:theBEcondensedq 0andthefinite-momentumq,0pairs. = 3.1. TheeffectoftheBose-Einsteincondensedpairs WestartbyconsideringtheusualBCSapproach,whenonlythezeromomentumpairsaretakeninto account.Thissituationhasaparticularlyclearinterpretationwithinthepathintegralformalism,treating thepairingfieldviatheHubbard-Stratonovichtransformationanddeterminingitfromtheminimization ofaction(thesaddlepointsolution).Thesameresultcanbeobtainedusingtheequationofmotion(2.4), focusingontheeffectofq 0pairs = d bˆ idtcˆk↑ ≃ εk−µ cˆk↑−gηkcˆ−†k↓ p0N, (3.1) ¡ ¢ ˆ† d b idtcˆk†↓ ≃ − εk−µ cˆk†↓−gηk p0N cˆk↑. (3.2) ¡ ¢ ˆ(†) Macroscopicoccupancyoftheq 0stateimpliesthatthebosonicoperatorsb canbetreatedascomplex = 0 ( ) numbersb0∗.Byintroducingtheorderparameter bˆ 1 ∆k=gηk〈p0N〉 =gηkN ηk′〈cˆ−k′↓cˆk′↑〉 (3.3) Xk′ theequations(3.1),(3.2)canbesolvedexactlyusingthestandardBogoliubov-Valatintransformation.In such BCS approach, the classical superconductivity has close analogy with the superfluidity of weakly interactingbosons,whosecollectivesound-likemodeoriginatesfromtheinteractionbetweenthefinite- momentumbosonsandtheBEcondensate. Inthepresentcontext, thezero-momentum Copperpairssubstantially affectthesingleparticleex- citationspectrum(andthetwo-bodycorrelationsaswell).Thesingle-particleGreen’sfunctionG(k,τ) −Tˆτ〈cˆk↑(τ)cˆk†↑〉,whereTˆτisthetimeorderingoperator,obeystheDysonequation = [G(k,ω)]−1 ω εk µ Σ(k,ω), (3.4) = − + − withtheBCSself-energy ∆ 2 Σ(k,ω) | k| . (3.5) =ω (ε µ) k + − The self-energy (3.5), accounting for the Andreev-type scattering of the k-momentum electrons on the Cooper pairs, can be alternatively obtained from the bubble diagram. The related spectral function A(k,ω) π−1ImG(k,ω i0+)isthuscharacterizedbythetwo-polestructure =− + A(k,ω)=uk2δ(ω−Ek)+vk2δ(ω+Ek) (3.6) with the Bogoliubov-type quasiparticle energies Ek =± εk−µ 2+∆2k and the spectral weights uk2 = 21 1+(εk−µ)/Ek and vk2 =1−uk2. Let us remark that qthe¡se qua¢siparticle branches are separated by th£e (true) energy¤gap |∆k|. In classical superconductors, ∆k implies the off-diagonal-long-range-order (ODLRO)thatquantitativelydependsonconcentrationoftheBEcondensedCooperpairs.ODLROisre- sponsible for a dissipationless motion of the charge carriers and simultaneously causes the Meissner effectviathespontaneousgaugesymmetrybreaking. 13701-3 T.Domański 3.2. Theeffectofthenon-condensedpairs Inthissectionweshallstudyeffectofthefinite-momentumpairsexistingaboveT ,whichnolonger c developanyODLRObecausethereisnoBEcondensate.Nevertheless, accordingto(2.4),thesingleand pairedfermionsarestillmutuallydependent.ThisfactsuggeststhatthepreviousBCSform(3.5)should be replaced by some corrections originating from the finite momentum pairs. Let us denote the pair propagatorbyL(q,τ) Tˆτ bˆ(r,τ)bˆ†(0,0) andassumeitsFouriertransforminthefollowingform =− 〈 〉 1 L(q,ω) , (3.7) =ω E iΓ(q,ω) q − − whereEq standsfortheeffectivedispersionofpairsandΓ(q,ω)describestheinverselife-time.Taking intoaccounttheequation(2.4),weexpresstheself-energyviathebubblediagram 1 Σ(k,ω)=−T ω ξ iν L(q,iνn), (3.8) iνXn,q − q−k− n whereξq k εq k µandiνn isthebosonicMatsubarafrequency.SinceaboveTc thepreformedpairs − = − − areonlyshort-rangecorrelated[21–23],weimpose t r Lˆ†(r,t)Lˆ(0,0) exp | | | | . (3.9) 〈 〉∝ −τ −ξ µ φ φ¶ Following T.Senthil andP.A. Lee [22, 23], onecanestimate thesingle particleGreen’sfunction G(k,ω) usingthefollowinginterpolation ω ξ Σ(k,ω) ∆2 − k , (3.10) = ω2 ξ2 πΓ2 − k+ where∆istheenergygapduetopairingandtheoth¡erparam¢eterΓisrelatedtodampingofthesubgap states.Inthelowenergylimit(i.e.,for ω ∆)thedominantcontributioncomesfromthein-gapquasi- particlewhoseresidueis Z 1 ∆2/(|πΓ|≪2) −1,whereas athigher energiestheBCS-typequasiparticles ≡ + arerecovered.Thisselfenergy(3.10)canbederivedfromthemicroscopicconsiderations[42]withinthe £ ¤ two-componentmodel,describingitinerantfermionscoupledtothehard-corebosons[43–50]. Theother(closelyrelative)phenomenologicalansatz[31,32] ∆2 Σ(k,ω)=ω ξk iΓ0−iΓ1 (3.11) + + hasbeeninferredconsideringthe“smallfluctuations”regime[26].Experimentallineshapesoftheangle resolvedphotoemissionspectroscopyobtainedforthecupratesuperconductorsatvariousdopinglevels and temperatures(including the pseudogap regime) amazingly well coincide withthis simple formula (3.11).ThegapandthephenomenologicalparametersΓ0,Γ1 areingeneralmomentum-dependent, but foragivendirectionintheBrillouinzoneonecanrestrictonlytotheirtemperatureanddopingvaria- tions.Fromnowonwardsweshallfocusonsuchantinodalregion. Intheoverdopedsamples,Γ0canbepracticallydiscardedfrom(3.11)andtheremainingparameter Γ1simplyaccountsforT-dependentbroadeningoftheBogoliubovpeaksuntiltheydisappearjustabove Tc.PhysicaloriginofΓ1ishencerelatedtotheparticle-particlescattering.Onthecontrary,intheunder- dopedregime,thereexistsapseudogapuptotemperaturesT∗whichbyfarexceedTc.Toreproducethe experimentallineshapes,onemustthenincorporatetheotherparameterΓ0 (nonvanishingonlyabove Tc)whichisscaledbyT Tc asshowninfigure1reproducedfromreferences[31,32].SinceΓ0 enters − theself-energy(3.11)throughtheBCS-typestructure,itsoriginisrelatedtotheparticle-holescatterings. Wenowinspectsomeconsequencesoftheparametrization(3.11)applicableforthepseudogapregime T Tc intheunderdopedcuprates.SinceneitherthemagnitudeofΓ1 nor∆seemtovaryoveralarge > temperatureregionaboveT ,itisobviousthatthequalitativechangesaretheredominatedbyscatter- c ingsinthe particle-hole channel, i.e., duetoΓ0. Roughly speaking, these processes areresponsible for filling-in the low energy states upon increasing T as has been evidenced by ARPES [16] and STM [25] 13701-4 Quasiparticlestatesduetopreformedpairs 200 150 Γ 1 eV) 100 m ( ∆ 50 T Γ c 0 0 0 50 K 100 K 150 K Temperature Figure 1. (Color online) Temperature dependence of the phenomenological parameters ∆, Γ0 and Γ1 which, through the self-energy (3.11), reproduce the experimental profiles of the underdoped Bi2212 (Tc 83K)sample.Thisfittingisadoptedfromreferences[31,32]. = measurements. On a microscopic level, such changes can be assigned to scattering on the preformed pairs. Foranalyticalconsiderations,letusrewritethecomplexself-energy(3.11)as ∆2 Σ(k,ω)=(ω+ξk)(ω ξ )2 Γ2−iΓk(ω), (3.12) + k + 0 wheretheimaginarypartis ∆2 Γk(ω)=Γ1+Γ0(ω ξ )2 Γ2. (3.13) + k + 0 InwhatfollowsweindicatethataboveT theexcitationspectrumcanconsistofaltogetherthreedifferent c states,twoofthemcorrespondingtotheBogoliubovmodes(signifyingparticle-holemixingcharacteris- tic for the superconducting state) and another one corresponding to the single particle fermion states whichforminsidethepseudogap.ThesestatesstarttoappearatT =Tc+ andinitiallyrepresentheavily overdampedmodescontaininginfinitesimalspectralweight(seereference[22,23]foramoredetailed discussion).Uponincreasingtemperature,theirlife-timegraduallyincreasesandsimultaneouslythein- gapstatesabsorbmoreandmorespectralweightattheexpenseoftheBogoliubovquasiparticles.Finally (intheparticularcaseconsideredhere,thishappensroughlynear2T )thesingleparticlefermionstates c becomedominant. Anticipatingtherelevanceof(3.11)tothestronglycorrelatedcupratematerials,onecandetermine thesingleparticleGreen’sfunctionG(k,ω)andthecorrespondingspectralfunctionA(k,ω).Quasiparticle energiesaredeterminedbypolesoftheGreen’sfunction,i.e., ω ξk Re{Σ(k,ω)} 0 (3.14) − − = providedthattheimaginarypartΓk(ω)disappears.Weclearlyseethatthelatterrequirementcannotbe satisfiedforΓ1,0regardlessofΓ0.Formallythismeansthatthelife-timeofhereindiscussedquasipar- ticlesisnotinfinite.Letuschecktheseeventual(finitelife-time)quasiparticlestatesdeterminedthrough (3.14).Usingtheself-energy(3.11),thecondition(3.14)isequivalentto ∆2 (ω−ξk)−(ω+ξk)(ω ξ )2 Γ2 =0. (3.15) + k + 0 Ingeneral,thereappearthreesolutions(figure2)dependingontemperatureviatheparameterΓ0. Superconductingregion.Thefittingprocedure[31,32]hasestimatedthattheparameterΓ0 vanishes in the superconducting state T T . Under such conditions, (3.15) yields the standard BCS poles at c É Ek=± ξ2k+∆2.DuetoΓ1,0,theyshowupinthespectralfunctionA(k,ω)asLorentzianswhosebroad- eningcqorrespondstotheinverselife-timeoftheBogoliubovmodes.OwingtoT-dependenceofΓ1 (see 13701-5 T.Domański Figure2.(Coloronline)Dispersionofω=Ekrepresentingthesolutionsofequation(3.14)forT/Tc=0.95 (dottedline),1.1,1.5and2(solidcurvesasdescribed)obtainedfortheparametersusedinreferences [31,32]. We notice three different crossings (3.15), two of themrelated totheBogoliubov modes and additionaloneappearinginbetween. figure1),thebroadeningofthesepeaksincreasesuponapproachingT frombelow,albeitA(k,ω 0) 0. c = = Experimentallythisprocesscanbeobservedasthesmearingofthecoherencepeaks[1]. Pseudogapregime.WiththeappearanceofΓ0,0aboveTc,therealpartoftheself-energybecomes acontinuous functionofω(seefigure3).Consequently, besidestheBogoliubovmodes, wenowobtain anadditionalcrossinglocatedin-between.Figure2showstherepresentativedispersioncurvesobtained for1.1T ,1.5T ,2T andcomparedwiththesuperconductingstate(dottedline).Weobserveeitherthe c c c threebranchesorjustthesingleoneatsufficientlyhightemperatureswhenthespectralfunctionA(k,ω) evolvestoasinglepeakstructure. Assomeusefulexample,letusstudytheFermimomentumk ,when(3.15)simplifiesto F ∆2 ω 1 0. (3.16) à −ω2+Γ20!= Inthiscase,weobtain:a)twosymmetricquasiparticleenergiesatω ∆˜,where∆˜ ∆2 Γ2,andb) thein-gapstateatω0 0.ThecorrespondingimaginarypartsΓk(ω)±ar=e± ≡ q − 0 = Γk(ω ) Γ1 Γ0, (3.17) ± = + ∆2 Γk(ω0) = Γ1+Γ0 . (3.18) Figure3.(Coloronline)Therealpartoftheself-energyΣ(k,ω)forεk=µatseveralrepresentativetem- peraturesT/Tc=0.95(dottedline)and1.1,1.5,2.0(asdenoted).BelowTcthereexisttwopolesatω ∆ =± whereasforT Tc,weobtainaltogetherthreecrossingswhichathighertemperaturemergeintoasingle > one. 13701-6 Quasiparticlestatesduetopreformedpairs Figure4.(Coloronline)TheimaginarypartΓk(ω)forthesamesetofparametersasusedinfigure3.The filledsymbolsindicatethevalueofΓk(ω)andpositionofthecrossingsω=EkofthelowerBogoliubov mode(squares),in-gapstate(circles)andtheupperBogoliubovbranch(triangles). SinceΓ1doesnotvaryaboveTc,thetemperaturedependenceofΓ−k1(ωi)iscontrolledbyΓ0.Usingtheex- perimentalestimations[31,32],wethusfindthequalitativelyoppositetemperaturevariationsofΓk(ω ) andΓk(ω0)showninfigure5.Thesequantitiescorrespondtothelife-timesofquasiparticlesand,ther±e- fore,weconcludethat: a) in-gapquasiparticlesareforbiddenforthesuperconductingstateduetovanishingΓ−k1(ω0)=0(in otherwords,spectrumconsistsofjusttheBogoliubovmodestypicaloftheBCStheories), b) inthepseudogapstateaboveTc,where∆,0andΓ0,0,besidestheBogoliubovbranchesthere emergein-gapstateswhichinitiallyatTc+representtheheavilyoverdampedmodes. Atafirstglance,ourconclusionsseemtobeinconflictwiththeARPESdata,whichhavenotreported anypronouncedin-gapfeatures.Nevertheless,variousstudiesofthepseudogapclearlyrevealedarather negligibletemperaturedependenceof∆(T)uponpassingT (atleastfortheanti-nodalareas).Insteadof c closingthisgap,thelowenergystatesaregraduallyfilled-in[25].Suchabehaviorcanbethoughtasan indirectsignatureofthein-gapstates,whichforincreasingtemperaturesabsorbmoreandmorespectral weight.Tosupportthisconjecture, weillustrateinfigure6anongoingtransferofthespectralweights between the Bogoliubov quasiparticles and in-gap states. Using (3.11), we show the spectral function A(k,ω)subtractingitsvalueatT inanalogytothedetailedexperimentaldiscussionbyT.Kondoetal. c [16]. In-gap states emerge around ω0 and gradually gain the spectral weight (figure 7) simultaneously increasingtheirlife-time. Intrinsicbroadeningofthein-gapstates[53]unfortunatelyobscurestheirobservationbythespectro- scopictoolsattemperaturesclosetoT .Thesestatesmightbe,however,probedindirectly.T.Senthiland c P.A.Lee[22,23]suggestedthatsuchstatescouldberesponsibleforthemagnetooscillationsobservedex- 0.02 ε = µ k -1V) 0.015 e m -1Γ (k 0.01 Bogoliubov peaks 0.005 In-gap states 0 0 50 K 100 K 150 K 200 K Temperature Figure5.(Coloronline)TemperaturedependenceoftheinversebroadeningΓ−k1 whichcorrespondsto theeffectivelife-timeoftheBogoliubovmodes(thinline)andthein-gapstates(thickcurve)obtainedfor εk=µ. 13701-7 T.Domański ε = µ k T = 2.5 T Tc c = T ω)| k, A( T = 2.0 Tc ω) - k, A( T = 1.5 T c T = 1.1 T c -200 -100 0 100 200 ω (meV) Figure6.(Coloronline)TransferofthespectralweightfromtheBogoliubovquasiparticlepeakstowards thein-gapstatesobtainedusing(3.11)forεk=µ.Temperaturedependenceofthetotaltransferredspec- tralweightisshowninfigure7. perimentallybyN.Doiron-Leyraudetal.[51,52].Theyindicatedthatpair-coherenceextendingonlyover shortspatial-andtemporallength naturallyimpliesthepairdecay(scattering)intothein-gapfermion states.Thislineofreasoninghasbeenalsofollowedbysomeothergroups[53,54]. 4. Microscopic toy model Pairingofthecupratesuperconductorsoccursonalocalscale,practicallybetweenthenearestneigh- borlatticesites.Toaccountforaninterplaybetweenthepairedandunpairedchargecarrierstakingplace inthepseudogapregimeweconsiderherethefollowingsimplifiedpicture Hˆloc=ε0 σ cˆσ†cˆσ+E0bˆ†bˆ+ ∆bˆ†cˆ↓cˆ↑+h.c. , (4.1) X ³ ´ wherecˆ(†)correspondtotheunpairedfermionsandbˆ(†)tothepairs(hard-corebosons).Weassumethat σ in the pseudogap state, neither the fermions nor the hard-core boson pairs are long-living because of theirmutualscatteringbytheAndreevchargeexchangeterm.Thesametypeofscattering,althoughin 4 Result from eqn (3.11) Andreev scattering % ) s ( 3 e at st 2 p a g n- 1 I 0 0.1 1 10 T / T c Figure7.(Coloronline)Spectralweightcorrespondingtothein-gapstatesobtainedfromthephenomeno- logicalansatz(3.11)forεk=µ(dottedcurve)andsolutionofthetoymodel(4.1)forε0=0=E0(solidline). 13701-8 Quasiparticlestatesduetopreformedpairs themomentumspace,hasbeenconsideredinreference[22,23]withinthelowestorderdiagrammatic treatment.Onamicroscopicfooting,theHamiltonian(4.1)canberegardedastheeffectivelowenergy descriptionoftheplaquettizedHubbardmodel[47,48]. Neglecting theitinerancyofthechargecarriers,wecanobtainarigoroussolutionforagivenlocal cluster(nottobeconfusedwiththeindividualcoppersitesinCuO2planes[50]).Exactdiagonalizationof theHilbertspaceyieldsthefollowingsingleparticleGreen’sfunction[42] Z 1 Z G(ω) QP − QP . (4.2) = ω−ε0+ω−ε0−ω |ε∆0|2E0 + − Letusnoticethatthesecondtermonrhsof(4.2)acquiresthesamestructureasimposedby(3.11).Inthe presentcase,noimaginarytermsappearbutthestructureoftheGreen’sfunction(4.2)mimicstheroleof Γ0.Formally,itdescribesthebondingandantibondingstatesoriginatingfromtheAndreevscatteringand besidesthatwealsohavearemnantofthenon-interactingpropagator[ω ε0]−1whosespectralweight − isgivenbyZ . QP The quasiparticle weight Z depends on occupancies of the fermion and boson levels. As an ex- QP ample,weexploreherethesymmetric(i.e.,half-filled) casewithε0 0andE0 0whenZQP 2/[3 = = = + cosh(∆/k T)].Assumingthetypicalratio ∆/k T 4,weplotinfigure7thetemperaturedependence B B c | | | | = oftheunpairedstates contributionZ tothespectrum. Wefind averygood agreement between our QP simpletreatmentandtheestimationsusingtheself-energy(3.11).ItmeansthattheparameterΓ0 intro- ducedinreferences[31,32]andthelocalAndreev-typescatteringconsideredhereaccountforthevery sameparticle-holeprocessesinducingthein-gapstates.Transferofthespectralweightfromthepaired tounpairedstates(figure7)confirmsthequalitativeagreementoverabroadtemperatureregionandthe indicationforthesamecriticalpoint. Formorerealisticcomparisonofthepresentstudywiththeexperimentaldata[16],oneobviouslyhas toconsidertheitinerantchargecarriers.Asanaturalimprovementofthelocalsolution(4.2)wewould expectthefollowingtypeofGreen’sfunction Z (k) 1 Z (k) f(q,k) G(k,ω) QP − QP , (4.3) = ω−εk +Xq £ω−εk−ω+¤ε|∆q−kk|2−Eq whereT-dependentcoefficients f(q,k)shouldbedeterminedviathemany-bodytechniques.Approach- ingT from above the predominant influencecomes from q 0 bosons and then we noticethat (4.3) c → reduces to the ansatz (3.11). Such results have been recently reported from the dynamical mean field calculationsfortheHubbardmodel[55,56]. 5. Conclusions and outlook Wehaveshownthatthepairingansatz(3.11),widelyusedforfittingtheexperimentalARPESprofiles, aboveT correspondstothepairscatteringinducingthesingleparticlefermionstatesinsidethepseu- c dogap.Temperaturedependentphenomenological parameterΓ0 isfound tocontrolthetransferofthe spectralweightfromtheBogoliubovquasiparticlestotheunpairedin-gapstates.Tomodelsuchapro- cessonamicroscopiclevel,wehaveconsideredthescenarioinwhichthelocalpairsarescatteredinto singlefermionsviatheAndreevconversion[22,23,47,48,50].Wehavefoundauniquerelationbetween thetransferredspectralweight(fromthepairedtounpairedquasiparticles)withthenon-bondingstate Z .Itwouldbeinstructivetoextendthepresentanalysisontothecaseofk-dependentenergygap.Such QP aproblemwould becloselyrelatedtotheissueofFermiarcs,i.e.,partiallyreconstructedpiecesofthe Fermisurface,andtonontrivialangulardependenceofthepseudogap[1]. Acknowledgements AuthorisindebtedforthefruitfuldiscussionswithAdamKamiński,RomanMicnas,JuliusRanninger, andKarolI.Wysokiński.ThisworkissupportedbytheNationalScienceCentreinPoland throughthe projectsDEC-2014/13/B/ST3/04451. 13701-9 T.Domański References 1. KaminskiA.,KondoT.,TakeuchiT.,GuG.,Philos.Mag.B,2014,95,453;doi:10.1080/14786435.2014.906758. 2. GaeblerJ.P.,StewartJ.T.,DrakeT.E.,JinD.S.,PeraliA.,PieriP.,StrinatiG.C.,Nat.Phys.,2010,6,569; doi:10.1038/nphys1709. 3. UemuraY.J.,LeL.P.,LukeG.M.,SternliebB.J.,WuW.D.,BrewerJ.H.,RisemanT.M.,SeamanC.L.,MapleM.B., IshikawaM.,HinksD.G.,JorgensenJ.D.,SaitoG.,YamochiH.,Phys.Rev.Lett.,1991,66,2665; doi:10.1103/PhysRevLett.66.2665. 4. OrensteinJ.,CorsonJ.,OhS.,EcksteinJ.N.,Ann.Phys.(Leipzig),2006,15,596;doi:10.1002/andp.200510202. 5. CorsonJ.,MallozziR.,OrensteinJ.,EcksteinJ.N.,BozovicI.,Nature,1999,398,221;doi:10.1038/18402. 6. WangY.,LiL.,OngN.P.,Phys.Rev.B,2006,73,024510;doi:10.1103/PhysRevB.73.024510. 7. XuZ.A.,OngN.P.,WangY.,TakeshitaT.,UchidaS.,Nature,2000,406,486;doi:10.1038/35020016. 8. KanigelA.,ChatterjeeU.,RanderiaM.,NormanM.R.,KorenG.,KadowakiK.,CampuzanoJ.,Phys.Rev.Lett.,2008, 101,137002;doi:10.1103/PhysRevLett.101.137002. 9. ShiM.,BendounanA.,RazzoliE.,RosenkranzS.,NormanM.R.,CampuzanoJ.C.,ChangJ.,ManssonM.,SassaY., ClaessonT.,TjernbergO.,PattheyL.,MomonoN.,OdaM.,IdoM.,GuerreroS.,MudryC.,MesotJ.,Eur.Phys.Lett., 2009,88,27008;doi:10.1209/0295-5075/88/27008. 10. LeeJ.,FujitaK.,SchmitA.R.,KimC.K.,EisakiH.,UchidaS.,DavisJ.C.,Science,2009,325,1099; doi:10.1126/science.1176369. 11. BergealN.,LesueurJ.,ApriliM.,FainiG.,ContourJ.P.,LeridonB.,Nat.Phys.,2008,4,608;doi:10.1038/nphys1017. 12. YuliO.,AsulinI.,KalchaimY.,KorenG.,MilloO.,Phys.Rev.Lett.,2009,103,197003; doi:10.1103/PhysRevLett.103.197003. 13. LiL.,WangY.,KomiyaS.,OnoS.,AndoY.,GuG.D.,OngN.P.,Phys.Rev.B,2010,81,054510; doi:10.1103/PhysRevB.81.054510. 14. IyeT.,NagatochiT.,IkedaR.,MatsudaA.,J.Phys.Soc.Jpn.,2010,79,114711;doi:10.1143/JPSJ.79.114711. 15. Bernardi E., Lascilfari A., Ragimonti A., Romano L., Scavini M., Oliva C., Phys. Rev. B, 2010, 81, 064502; doi:10.1103/PhysRevB.81.064502. 16. KondoT.,KhasanovR.,TakeuchiT.,SchmalianJ.,KaminskiA.,Nature,2009,457,296;doi:10.1038/nature07644. 17. Dubroka A., Rössle M., Kim K.W., Malik V.K., Munzar D., Basov D.N., Schafgans A.A., Moon S.J., Lin C.T., HaugD.,HinkovV.,KeimerB.,WolfTh.,StoreyJ.G.,TallonJ.L.,BernhardC.,Phys.Rev.Lett.,2011,106,047006; doi:10.1103/PhysRevLett.106.047006. 18. KirzhnerT.,KorenG.,Sci.Rep.,2014,4,6244;doi:10.1038/srep06244. 19. Moon S.J., Lee Y.S., Schafgans A.A., Chubukov A.V., Kasahara S., Shibauchi T., Terashima T., Matsuda Y., Tanatar M.A., Prozorov R., Thaler A., Canfield P.C., Bud’ko S.L., Sefat A.S., Mandrus D., Segawa K., Ando Y., BasovD.N.,Phys.Rev.B,2014,90,014503;doi:10.1103/PhysRevB.90.014503. 20. Cilento F., Dal Conte S., Coslovich G., Peli S., Nembrini N., Mor S., Banfi F., Ferrini G., Eisaki H., Chan M.K., DorowC.J.,VeitM.J.,GrevenM.,vanderMarelD.,CominR.,DamascelliA.,RettigL.,BovensiepenU.,CaponeM., GiannettiC.,ParmigianiF.,Nat.Commun.,2014,5,4353;doi:10.1038/ncomms5353. 21. FranzM.,Nat.Phys.,2007,3,686;doi:10.1038/nphys739. 22. SenthilT.,LeeP.A.,Phys.Rev.Lett.,2009,103,076402;doi:10.1103/PhysRevLett.103.076402. 23. SenthilT.,LeeP.A.,Phys.Rev.B,2009,79,245116;doi:10.1103/PhysRevB.79.245116. 24. MamedovT.A.,deLlanoM.,Philos.Mag.B,2014,94,4102;doi:10.1080/14786435.2014.979903. 25. FischerO.,KuglerM.,Maggio-AprileI.,BerthodCh.,RennerCh.,Rev.Mod.Phys.,2007,79,353; doi:10.1103/RevModPhys.79.353. 26. AbrahamsE.,RedM.,WooJ.W.F.,Phys.Rev.B,1970,1,208;doi:10.1103/PhysRevB.1.208. 27. SchmidA.,Z.Phys.,1970,231,324;doi:10.1007/BF01397514. 28. RanningerJ.,RobinJ.M.,PhysicaC,1995,253,279;doi:10.1016/0921-4534(95)00515-3. 29. EmeryV.J.,KivelsonS.A.,Nature,1995,374,434;doi:10.1038/374434a0. 30. TchernyshyovO.,Phys.Rev.B,1997,56,3372;doi:10.1103/PhysRevB.56.3372. 31. NormanM.R.,RanderiaM.,DingH.,CampuzanoJ.C.,Phys.Rev.B,1998,57,11093; doi:10.1103/PhysRevB.57.R11093. 32. FranzM.,MillisA.J.,Phys.Rev.B,1998,58,14572;doi:10.1103/PhysRevB.58.14572. 33. FujimotoS.,J.Phys.Soc.Jpn.,2002,71,1230;doi:10.1143/JPSJ.71.1230. 34. DomańskiT.,RanningerJ.,Phys.Rev.Lett.,2003,91,255301;doi:10.1103/PhysRevLett.91.255301. 35. DomańskiT.,RanningerJ.,Phys.Rev.B,2001,63,134505;doi:10.1103/PhysRevB.63.134505. 36. ChubukovA.V.,NormanM.R.,MillisA.J.,AbrahamsE.,Phys.Rev.B,2007,76,180501; doi:10.1103/PhysRevB.76.180501. 37. ChenQ.J.,StajicJ.,TanS.N.,LevinK.,Phys.Rep.,2005,412,1;doi:10.1016/j.physrep.2005.02.005. 13701-10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.