Quasilinear Lane-Emden equations with absorption and measure data 3 1 0 2 Marie-Fran¸coise Bidaut-V´eron∗ n Nguyen Quoc Hung† a J Laurent V´eron‡ 5 1 Laboratoire de Math´ematiques et Physique Th´eorique, Universit´e Franc¸ois Rabelais, Tours, FRANCE ] P A . h t Contents a m [ 1 Introduction 2 2 2 Lorentz spaces and capacities 4 v 4 2.1 Lorentz spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 2.2 Wolff potentials, fractional and η-fractional maximal operators . . . 5 3 6 2.3 Estimates on potentials . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 2.4 Approximation of measures . . . . . . . . . . . . . . . . . . . . . . . 16 2 1 2 3 Renormalized solutions 19 1 3.1 Classical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 : v 3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 i X 4 Equations with absorption terms 23 r a 4.1 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Proofs of Theorem 1.1 and Theorem 1.2 . . . . . . . . . . . . . . . . 26 2010 Mathematics Subject Classification. 35J92,35R06,46E30. Key words: quasilinear elliptic equations, Wolff potential, maximal functions, Borel measures, Lorentz spaces,Lorentz-Besselcapacities. ∗E-mail address: [email protected] †E-mail address: [email protected] ‡E-mail address: [email protected] 1 Abstract We study the existence of solutions to the equation −∆ u+g(x,u) = µ when p g(x,.) is a nondecreasing function and µ a measure. We characterize the good measures, i.e. the ones for which the problem has a renormalized solution. We study particularly the caseswhereg(x,u)=|x|−β|u|q−1uandg(x,u)=sgn(u)(eτ|u|λ−1). Theresultsstatethata measure is good if it is absolutely continuous with respect to an appropriate Lorentz-Bessel capacities. 1 Introduction Let Ω ⊂ RN be a bounded domain containing 0 and g : Ω×R → R be a Caratheodory function. We assume that for almost all x ∈ Ω, r 7→ g(x,r) is nondecreasing and odd. In this article we consider the following problem −∆ u+g(x,u)=µ in Ω p (1.1) u=0 in ∂Ω where∆ u=div |∇u|p−2∇u ,(1<p<N),isthe p-Laplacianandµaboundedmeasure. p A measureforwh(cid:16)ichthe probl(cid:17)emadmits asolution,in anappropriateclass,is calleda good measure. When p = 2 and g(x,u) = g(u) the problem has been considered by Benilan and Brezis [4] in the subcritical case that is when any bounded measure is good. They prove that such is the case if N ≥3 and g satisfies ∞ g(s)s−NN−−12ds<∞. (1.2) Z1 Thesupercriticalcase,alwayswithp=2,hasbeenconsideredbyBarasandPierre[3]when g(u) = |u|q−1u and q > 1. They prove that the corresponding problem to (1.1 ) admits a solution (always unique in that case) if and only if the measure µ is absolutely continuous with respect to the Bessel capacity C (q′ = q/(q−1)). In the case p 6= 2 it is shown 2,q′ by Bidaut-V´eron [6] that if problem (1.1 ) with β = 0 and g(s) = |s|q−1s (q > p−1 > 0) admits a solution, then µ is absolutely continuous with respect to any capacity Cp, q +ǫ q+1−p for any ǫ>0. InthisarticleweintroduceanewclassofBesselcapacitieswhicharemodelledonLorentz spaces Ls,q instead of Lq spaces. If G is the Bessel kernel of order α > 0, we denote by α Lα,s,q(RN)theBesovspacewhichisthespaceoffunctionsφ=G ∗f forsomef ∈Ls,q(RN) α and we set kφk = kfk (a norm which is defined by using rearrangements). Then we α,s,q s,q set C (E)=inf{kfk : f ≥0, G ∗f ≥1 on E} (1.3) α,s,q s,q α for any Borel set E. We say that a measure µ in Ω is absolutely continuous with respect to the capacity C if , α,s,q ∀E ⊂Ω, E Borel , C (E)=0=⇒|µ|(E)=0. (1.4) α,s,q We also introduce the Wolff potential of a positive measure µ∈M (RN) by + W [µ](x)= ∞ µ(Bt(x)) s−11 dt (1.5) α,s tN−αs t Z0 (cid:18) (cid:19) 2 if α > 0, 1 < s < α−1N. When we are dealing with bounded domains Ω ⊂ B and R µ∈M (Ω), it is useful to introduce truncated Wolff potentials. + WR [µ](x)= R µ(Bt(x)) s−11 dt (1.6) α,s tN−αs t Z0 (cid:18) (cid:19) We prove the following existence results concerning −∆ u+|x|−βg(u)=µ in Ω p (1.7) u=0 in ∂Ω Theorem 1.1 Assume 1 < p < N, q > p−1 and 0 ≤ β < N and µ is a bounded Radon measure in Ω. 1- If g(s)=|s|q−1s, then (1.7 ) admits a renormalized solution if µ is absolutely continuous with respect to the capacity C . p, Nq , q Nq−(p−1)(N−β)) q+1−p 2- If g satisfies ∞ g(s)s−q−1ds<∞ (1.8) Z1 then (1.7 ) admits a renormalized solution if µ is absolutely continuous with respect to the capacity C . p, Nq ,1 Nq−(p−1)(N−β)) Furthermore, in both case there holds −cW2diam(Ω)[µ−](x)≤u(x)≤cW2diam(Ω)[µ+](x) for almost all x∈Ω. (1.9) 1,p 1,p where c is a positive constant depending on p and N. Inordertodealwithexponentialnonlinearitiesweintroducefor0<α<N thefractional maximal operator (resp. the truncated fractional maximal operator), defined for a positive measure µ by µ(B (x)) µ(B (x)) M [µ](x)=sup t , resp M [µ](x)= sup t , (1.10) α tN−α α,R tN−α t>0 (cid:18) 0<t<R (cid:19) and the η-fractional maximal operator (resp. the truncated η-fractional maximal operator) µ(B (x)) µ(B (x)) Mη[µ](x)=sup t , resp Mη [µ](x)= sup t , (1.11) α tN−αh (t) α,R tN−αh (t) t>0 η (cid:18) 0<t<R η (cid:19) where η ≥0 and (−lnt)−η if 0<t< 1 h (t)= 2 (1.12) η ( (ln2)−η if t≥ 21 Theorem 1.2 Assume 1 < p < N, τ > 0 and λ ≥ 1. Then there exists M > 0 depending on N,p,τ and λ such that if a measure in Ω, µ=µ+−µ− can be decomposed as follows µ+ =f +ν and µ− =f +ν , (1.13) 1 1 2 2 3 where f ∈L1(Ω) and ν ∈Mb (Ω) (j =1,2), and if j + j + (p−1)(λ−1) Mp,2diaλm(Ω)[νj] <M, (1.14) (cid:13) (cid:13)L∞(Ω) (cid:13) (cid:13) (cid:13) (cid:13) there exists a renormalized solu(cid:13)tion to (cid:13) −∆ u+sign(u) eτ|u|λ −1 =µ in Ω p (1.15) (cid:16) u(cid:17)=0 in ∂Ω. and satisfies (1.9 ). OurstudyisbasedupondelicateestimatesonWolffpotentialsandη-fractionalmaximal operators which are developed in the first part of this paper. 2 Lorentz spaces and capacities 2.1 Lorentz spaces Let (X,Σ,α) be a measured space. If f : X →R is a measurable function, we set S (t) := f {x∈X :|f|(x)>t} andλ (t)=α(S (t)). The decreasingrearrangementf∗ off is defined f f by f∗(t)=inf{s>0:λ (s)≤t}. f It is well known that (Φ(f))∗ = Φ(f∗) for any continuous and nondecreasing function Φ : R →R . We set + + 1 t f∗∗(t)= f∗(τ)dτ ∀t>0. t Z0 and, for 1≤s<∞ and 1<q ≤∞, ∞tqs(f∗∗(t))qdt 1q if q <∞ t kfkLs,q = (cid:18)Z0 (cid:19) (2.1) supessts1f∗∗(t) if q =∞ t>0 It is known that Ls,q(X,α) isa Banach space when endowed with the norm k.k . Fur- Ls,q thermore there holds (see e.g. [12]) s t1sf∗ Lq(R+,dt) ≤kfkLs,q ≤ s−1 t1sf∗ Lq(R+,dt), (2.2) (cid:13) (cid:13) t (cid:13) (cid:13) t (cid:13) (cid:13) (cid:13) (cid:13) the left-hand side i(cid:13)nequa(cid:13)lity being valid only if s >(cid:13)1. Fi(cid:13)nally, if f ∈ Ls,q(RN) (with 1 ≤ q,s < ∞ and α being the Lebesgue measure) and if {ρ } ⊂ C∞(RN) is a sequence of n c mollifiers, f∗ρ →f and(fχ )∗ρ →f inLs,q(RN), whereχ is the indicatorfunction oftheballB cnenteredattheoBrniginonfradiusn. InparticularC∞B(nRN)isdenseinLs,q(RN). n c 4 2.2 Wolff potentials, fractional and η-fractional maximal operators If D is either a bounded domain or whole RN, we denote by M(D) (resp Mb(D)) the set of Radon measure (resp. bounded Radon measures) in D. Their positive cones are M (D) + and Mb (D) respectively. If 0<R≤ ∞ and µ ∈M (D) and R ≥diam(D), we define, for + + α>0 and 1<s<α−1N, the R-truncated Wolff-potential by WR [µ](x)= R µ(Bt(x)) s−11 dt for a.e. x∈RN. (2.3) α,s tN−αs t Z0 (cid:18) (cid:19) If h (t) = min{(−lnt)−η,(ln2)−η} and 0 < α < N, the truncated η-fractional maximal η operator is µ(B (x)) Mη [µ](x)= sup t for a.e. x∈RN. (2.4) α,R tN−αh (t) 0<t<R η If R=∞, we drop it in expressions (2.3 ) and (2.4 ). In particular µ(B (x))≤tN−αh (t)Mη [µ](x). (2.5) t η α,R We also define G the Bessel potential of a measure µ by α G [µ](x)= G (x−y)dµ(y) ∀x∈RN, (2.6) α α ZRN where G is the Bessel kernel of order α in RN. α Definition 2.1 We denote by Lα,s,q(RN)the Besov space the space of functions φ=G ∗f α for some f ∈Ls,q(RN) and we set kφk =kfk . If we set α,s,q s,q C (E)=inf{kfk : f ≥0, G ∗f ≥1 on E}, (2.7) α,s,q s,q α then C is a capacity, see [1]. α,s,q 2.3 Estimates on potentials In the sequel, we denote by |A| the N-dimensional Lebesgue measure of a measurable set A and, if F,G are functions defined in RN, we set {F >a} := {x ∈ RN : F(x) > a}, {G≤b}:={x∈RN :G(x)≤b} and {F >a,G≤b}:={F >a}∩{G≤b}. The following result is an extension of [14, Th 1.1] Proposition 2.2 Let 0≤η <p−1, 0<αp<N and r >0. There exist c >0 depending 0 on N,α,p,η and ǫ > 0 depending on N,α,p,η,r such that, for all µ ∈ M (RN) with 0 + diam(supp(µ))≤r and R∈(0,∞], ǫ∈(0,ǫ ], λ> µ(RN) p−11 l(r,R) there holds, 0 WαR,p[µ]>3λ,(Mηαp,R[µ])p−11 ≤ǫλ (cid:0) (cid:1) (cid:12)n p−1o(cid:12) (2.8) (cid:12)(cid:12) ≤c0exp − p4−(p1−−1η) p−1−η(cid:12)(cid:12)αpln2ǫ−p−p−1−1η {WαR,p[µ]>λ} . (cid:18) (cid:16) (cid:17) (cid:19)(cid:12) (cid:12) where l(r,R) = N−αp min{r,R}−Np−−α1p −R−Np−−α1p if R < ∞(cid:12), l(r,R) = N−(cid:12)αpr−Np−−α1p if p−1 p−1 R=∞. Furthermore,(cid:16)if η =0, ǫ is independent of(cid:17)r and (2.8 ) holds for all µ∈M (RN) 0 + with compact support in RN and R∈(0,∞], ǫ∈(0,ǫ ], λ>0. 0 5 Proof. Case R=∞. Let λ>0; since W [µ] is lower semicontinuous, the set α,p D :={W [µ]>λ} λ α,p is open. By Whitney covering lemma, there exists a countable set of closed cubes {Q } i i o o such that D =∪ Q , Q ∩Q =∅ for i6=j and λ i i i j diam(Q)≤dist(Q,Dc)≤4diam(Q). i i λ i Let ǫ > 0 and Fǫ,λ = Wα,p[µ]>3λ,(Mηαp[µ])p−11 ≤ǫλ . We claim that there exist c0 = c0(N,α,p,η) > 0 and nǫ0 = ǫ0(N,α,p,η,r) > 0 such thatofor any Q ∈ {Qi}i, ǫ ∈ (0,ǫ0] and λ> µ(RN) p−11 l(r,∞) there holds (cid:0) (cid:1) p−1 |Fǫ,λ∩Q|≤c0exp − p−1−η p−1−η ǫ−p−p−1−1ηαpln2 |Q|. (2.9) 4(p−1) (cid:18) (cid:19) ! The first we show that there exists c > 0 depending on N,α,p and η such that for any 1 Q∈{Q } there holds i i F ∩Q⊂E ∀ǫ∈(0,c ],λ>0 (2.10) ǫ,λ ǫ,λ 1 where Eǫ,λ = x∈Q:Wα5,dpiam(Q)[µ](x)>λ,(Mαηp[µ](x))p−11 ≤ǫλ . (2.11) Infact, take Q ∈ {Q }n such that Q∩F 6= ∅ and let x ∈ Dc such thoat dist(x ,Q) ≤ i i ǫ,λ Q λ Q 4diam(Q) and W [µ](x )≤λ. For k ∈N, r =5diam(Q) and x∈F ∩Q, we have α,p Q 0 ǫ,λ 2k+1r0 µ(Bt(x)) p−11 dt =A+B tN−αp t Z2kr0 (cid:18) (cid:19) where 2k1+1+2k2+k1r0 µ(Bt(x)) p−11 dt 2k+1r0 µ(Bt(x)) p−11 dt A= and B = . Z2kr0 (cid:18) tN−αp (cid:19) t Z2k1+1+2k2+k1r0(cid:18) tN−αp (cid:19) t Since µ(B (x))≤tN−αph (t)Mη [µ](x)≤tN−αph (t)(ǫλ)p−1. (2.12) t η αp η Then 2k+1r0 tN−αphη(t)(ǫλ)p−1 p−11 dt 2k+1r0 1 dt B ≤Z2k1+1+2k2+k1r0(cid:18) tN−αp (cid:19) t =ǫλZ2k1+1+2k2+k1r0(hη(t))p−1 t Replacing h (t) by its value we obtain B ≤ c ǫλ2−k after a lengthy computation where c η 2 2 depends onlyonpandη. Since δ :=(2k2+k1)Np−−α1p,then1−δ ≤c32−k where c3 depends only on N−αp, thus p−1 (1−δ)A≤c 2−k 2k+1r0 µ(Bt(x)) p−11 dt 3 tN−αp t Z2kr0 (cid:18) (cid:19) ≤c32−kǫλ 2k+1r0(hη(t))p−11 dt t Z2kr0 ≤c 2−kǫλ, 4 6 where c =c (N,α,p,η)>0. 4 4 Byachangeofvariablesandusingthatforanyx∈F ∩Qandt∈[r (1+2k),r (1+2k+1)], ǫ,λ 0 0 B (x)⊂B (x ), we get 2kt t Q 1+2k 1 δA= r0(1+2k+1) µ(B12+k2tk)(x) p−1 dt ≤ r0(1+2k+1) µ(Bt(xQ)) p−11 dt. tN−αp t tN−αp t Zr0(1+2k) Zr0(1+2k) (cid:18) (cid:19) Therefore 2k+1r0 µ(Bt(x)) p−11 dt ≤c 2−kǫλ+ r0(1+2k+1) µ(Bt(xQ)) p−11 dt, tN−αp t 5 tN−αp t Z2kr0 (cid:18) (cid:19) Zr0(1+2k) (cid:18) (cid:19) with c =c (N,α,p,η)>0. This implies 5 5 ∞ µ(Bt(x)) p−11 dt ∞ µ(Bt(xQ)) p−11 dt ≤2c ǫλ+ ≤(1+2c ǫ)λ, (2.13) tN−αp t 5 tN−αp t 5 Zr0 (cid:18) (cid:19) Z2r0 (cid:18) (cid:19) since W [µ](x )≤λ. If ǫ∈(0,c ] with c =(2c )−1 then α,p Q 1 1 5 ∞ µ(Bt(x) p−11 dt ≤2λ tN−αp t Zr0 (cid:18) (cid:19) which implies (2.10 ). Now,weletλ> µ(RN) p−11 l(r,∞). LetB beaballwithradiusrsuchthatsupp(µ)⊂B . 1 1 We denote B by the ball concentric to B with radius 2r. Since x∈/ B , 2 1 2 (cid:0) (cid:1) W [µ](x)= ∞ µ(Bt(x)) p−11 dt ≤ µ(RN) p−11 l(r,∞). α,p tN−αp t Zr (cid:18) (cid:19) (cid:0) (cid:1) Thus, we obtain D ⊂B . In particular, r =5diam(Q)≤20r. λ 2 0 Next we set m = max(1,ln(40r)), so that 2−mr ≤2−1 if m≥m . Then for any x∈E 0 ln2 0 0 ǫ,λ r0 µt(NB−t(αxp)) p−11 dtt ≤ǫλ r0 (hη(t))p−11dtt Z2−mr0(cid:16) (cid:17) Z2−mr0 2−m0r0 −η dt r0 −η dt ≤ǫλ (−lnt)p−1 +ǫλ (ln2)p−1 t t Z2−mr0 Z2−m0r0 ≤m ǫλ+ (p−1)((m−m0)ln2)1−p−η1ǫλ. 0 p−1−η Forthelastinequalitywehaveuseda1−p−η1−b1−p−η1 ≤(a−b)1−p−η1 validforanya≥b≥0. Therefore, r0 µ(Bt(x)) p−11 dt ≤ 2(p−1) m1−p−η1ǫλ ∀m∈N,m>mp−p−1−1η. (2.14) tN−αp t p−1−η 0 Z2−mr0(cid:18) (cid:19) 7 Set 2−i+1r0 µ(Bt(x)) p−11 dt g (x)= , i tN−αp t Z2−ir0 (cid:18) (cid:19) then Wαr0,p[µ](x)≤ p2−(p1−−1)ηm1−p−η1ǫλ+Wα2−,pmr0[µ](x) ∞ ≤ 2(p−1) m1−p−η1ǫλ+ gi(x) p−1−η i=m+1 X p−1 for all m>mp−1−η. We deduce that, for β >0, 0 ∞ |Eǫ,λ|≤ x∈Q: gi(x)> 1− 2(p−1) m1−p−η1ǫ λ (cid:12)(cid:12)( i=Xm+1 (cid:18) p−1−η (cid:19) )(cid:12)(cid:12) (cid:12) ∞ (cid:12) ≤ (cid:12)(cid:12)x∈Q: gi(x)>2−β(i−m−1)(1−2−β) 1− 2(p(cid:12)(cid:12)−1) m1−p−η1ǫ λ (cid:12)(cid:12)( i=Xm+1 (cid:18) p−1−η (cid:19) )(cid:12)(cid:12) (cid:12) ∞ (cid:12) ≤(cid:12)(cid:12) x∈Q:gi(x)>2−β(i−m−1)(1−2−β) 1− 2(p−1) m1−p−η1ǫ λ (cid:12)(cid:12). p−1−η i=m+1(cid:12)(cid:26) (cid:18) (cid:19) (cid:27)(cid:12) X (cid:12) (cid:12) (cid:12) ((cid:12)2.15) (cid:12) (cid:12) Next we claim that c (N,η) |{x∈Q:g (x)>s}|≤ 6 2−iαp|Q|(ǫλ)p−1. (2.16) i sp−1 To see that, we pick x ∈E and we use the Chebyshev’s inequality 0 ǫ,λ 1 |{x∈Q:g (x)>s}|≤ |g |p−1dx i sp−1 i ZQ 1 r02−i+1 µ(Bt(x)) p−11 dt p−1 = dx sp−1 tN−αp t ZQ Zr02−i (cid:18) (cid:19) ! 1 µ(B (x)) ≤ r02−i+1 :=A. sp−1 (r 2−i)N−αp ZQ 0 Thanks to Fubini’s theorem, the last term A of the above inequality can be rewritten as 1 1 A= χ (y)dµ(y)dx sp−1(r02−i)N−αpZQZRN Br02−i+1(x) 1 1 = χ (x)dxdµ(y) sp−1(r02−i)N−αpZQ+Br02−i+1(0)ZQ Br02−i+1(y) 1 1 ≤ |B (y)|dµ(y) sp−1(r 2−i)N−αp r02−i+1 0 ZQ+Br02−i+1(0) 1 ≤c (N) 2−iαprαpµ(Q+B (0)) 7 sp−1 0 r02−i+1 1 ≤c (N) 2−iαprαpµ(B (x )), 7 sp−1 0 r0(1+2−i+1) 0 8 sinceQ+B (0)⊂B (x ). Usingthefactthatµ(B (x ))≤(ln2)−ηtN−αp(ǫλ)p−1 r02−i+1 r0(1+2−i+1) 0 t 0 for all t>0 and r =5diam(Q), we obtain 0 1 1 A≤c (N,η) 2−iαprαp(r (1+2−i+1))N−αp(ǫλ)p−1 ≤c (N,η) 2−iαp|Q|(ǫλ)p−1, 8 sp−1 0 0 9 sp−1 which is (2.16 ). Consequently, (2.15 ) can be rewritten as ∞ c (N,η) |E |≤ 6 2−iαp(ǫλ)p−1|Q| ǫ,λ i=m+1 2−β(i−m−1)(1−2−β) 1− 2(p−1)m1−p−η1ǫ λ p−1 X p−1−η (cid:16) (cid:16) p−1 (cid:17) (cid:17) ∞ ≤c (N,η)2−(m+1)αp ǫ |Q| 1−2−β −p+1 2(β(p−1)−αp)(i−m−1). 6 1− 2(p−1)m1−p−η1ǫ! p−1−η (cid:0) (cid:1) i=Xm+1 (2.17) If we choose β =β(α,p) so that β(p−1)−αp<0, we obtain p−1 ǫ p−1 |E |≤c 2−mαp |Q| ∀m>mp−1−η (2.18) ǫ,λ 10 1− 2(p−1)m1−p−η1ǫ! 0 p−1−η where c = c (N,α,p,η) > 0. Put ǫ = min 1 ,c . For any ǫ ∈ (0,ǫ ] we choose m10∈N s1u0ch that 0 (cid:26)p4(−p1−−1η)m0+1 1(cid:27) 0 p−1 p−1 p−1 p−1 p−1−η p−1−η 1 p−1−η p−1−η p−1−η 1 p−1−η −1 −1<m≤ −1 . 2(p−1) ǫ 2(p−1) ǫ (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) Then p−1 ǫ ≤1 1− 2(p−1)m1−p−η1ǫ! p−1−η and p−1 2−mαp ≤2αp−αp(p2(−p1−−1η))p−p−1−1η(1ǫ−1)p−p−1−1η ≤2αpexp −αpln2 p−1−η p−1−η ǫ−p−p−1−1η . 4(p−1) (cid:18) (cid:19) ! Combining these inequalities with (2.18 ) and (2.10 ), we get (2.9 ). In the case η =0 we still have for any m∈N, λ,ǫ>0 and x∈E ǫ,λ ∞ Wr0 [µ](x)≤mǫλ+ g (x) α,p i i=m+1 X Accordingly (2.18 ) reads as p−1 ǫ |E |≤c 2−mαp |Q| ∀m∈N,λ,ǫ>0 with mǫ<1. ǫ,λ 10 1−mǫ (cid:18) (cid:19) 9 Put ǫ = min{1,c }. For any ǫ ∈ (0,ǫ ] and m ∈ N satisfies ǫ−1−2 < m ≤ ǫ−1−1, we 0 2 1 0 finally get from (2.10 ) |F ∩Q|≤|E |≤c 22αpexp −αpǫ−1ln2 |Q|, (2.19) ǫ,λ ǫ,λ 10 which ends the proof in the case R=∞. (cid:0) (cid:1) Case R < ∞. For λ > 0, D = {WR > λ} is open. Using again Whitney covering λ α,p lemma, there exists a countable set of closed cubes Q := {Q } such that ∪ Q = D , i i i λ o o Q ∩Q =∅ fori6=j anddist(Q ,Dc)≤4diam(Q). IfQ∈Q:is suchthatdiam(Q)> R, i j i λ i 8 there exists a finite number n of closed dyadic cubes {P }nQ such that ∪nQ P = Q, Q j,Q j=1 j=1 j,Q o o P ∩P = ∅ if i 6= j and R < diam(P )≤ R. We set Q′ = Q∈Q:diam(Q)≤ R , i,Q j,Q 16 j,Q 8 8 Q′′ = P :1≤i≤n ,Q∈Q,diam(Q)> R and F =Q′∪Q′′. i,Q Q 8 (cid:8) (cid:9) For ǫ >(cid:8) 0 we denote again Fǫ,λ = WαR,p[µ]>(cid:9)3λ,(Mηαp,R[µ])p−11 ≤ǫλ . Let Q ∈ F such that Fǫ,λ∩Q6=∅ and r0 =5diam(nQ). o If dist(Dc,Q) ≤ 4diam(Q), that is if there exists x ∈ Dc such that dist(x ,Q) ≤ λ Q λ Q 4diam(Q) and WR [µ](x ) ≤ λ, we find, by the same argument as in the case R = ∞, α,p Q (2.13 ), that for any x∈F ∩Q there holds ǫ,λ R µ(Bt(x)) p−11 dt ≤(1+c ǫ)λ. (2.20) tN−αp t 11 Zr0 (cid:18) (cid:19) where c =c (N,α,p,η)>0. 11 11 If dist(Dc,Q) > 4diam(Q), we have R < diam(Q) ≤ R since Q ∈ Q′′. Then, for all λ 16 8 x∈F ∩Q, there holds ǫ,λ R µ(Bt(x)) p−11 dt R tN−αp(ln2)−η(ǫλ)p−1 p−11 dt ≤ tN−αp t tN−αp t Zr0 (cid:18) (cid:19) Z51R6 (cid:18) (cid:19) =(ln2)−p−η1 ln16 ǫλ (2.21) 5 ≤2ǫλ. Thus, if we take ǫ∈(0,c ] with c =min{1,c−1}, we derive 12 12 11 F ∩Q⊂E , (2.22) ǫ,λ ǫ,λ where 1 E = Wr0 [µ]>λ, Mη [µ] p−1 ≤ǫλ . ǫ,λ α,p αp,R (cid:26) (cid:16) (cid:17) (cid:27) Furthermore, since x∈/ B , 2 WR [µ](x)= R µ(Bt(x)) p−11 dt ≤ µ(RN) p−11 l(r,R). α,p tN−αp t Zmin{r,R}(cid:18) (cid:19) (cid:0) (cid:1) 10