Massimiliano Berti Q M Monographs in Mathematics u a Philippe Bolle a s s s i i - m Quasi-Periodic Solutions of Nonlinear Wave P i e l r ia i Equations on the d-Dimensional Torus o n d o i c B e S r o t lu i a Massimiliano Berti t n i o d n Philippe Bolle P s h o i f li Many partial differential equations (PDEs) arising in physics, such as the nonlinear N pp wave equation and the Schrödinger equation, can be viewed as infinite-dimensional o e Quasi-Periodic Solutions n Hamiltonian systems. In the last thirty years, several existence results of time quasi- B l i o periodic solutions have been proved adopting a “dynamical systems” point of view. Most n l e l of them deal with equations in one space dimension, whereas for multidimensional a e of Nonlinear Wave Equations PDEs a satisfactory picture is still under construction. r W a An updated introduction to the now rich subject of KAM theory for PDEs is provided in v on the d-Dimensional Torus e the first part of this research monograph. The focus then moves to the nonlinear wave E equation, endowed with periodic boundary conditions. The main result of the monograph q proves the bifurcation of small amplitude finite-dimensional invariant tori for this u a equation, in any space dimension. This is a difficult small divisor problem due to complex t i resonance phenomena between the normal mode frequencies of oscillations. The proof o n requires various mathematical methods, ranging from Nash–Moser and KAM theory to s reduction techniques in Hamiltonian dynamics and multiscale analysis for quasi-periodic o n linear operators, which are presented in a systematic and self-contained way. Some of t the techniques introduced in this monograph have deep connections with those used in h e Anderson localization theory. d - This book will be useful to researchers who are interested in small divisor problems, D i particularly in the setting of Hamiltonian PDEs, and who wish to get acquainted with m recent developments in the field. e n s i o n a l T o r u s ISBN 978-3-03719-211-5 https://ems.press Monographs / Berti/Bolle | Font: Rotis Semi Sans | Farben: Pantone 116, Pantone 287 | RB 22 mm EMS Monographs in Mathematics Edited by Hugo Duminil-Copin (Institut des Hautes Études Scientifiques (IHÉS), Bures-sur-Yvette, France) Gerard van der Geer (University of Amsterdam, The Netherlands) Thomas Kappeler (University of Zürich, Switzerland) Paul Seidel (Massachusetts Institute of Technology, Cambridge, USA) EMS Monographs in Mathematics is a book series aimed at mathematicians and scientists. It publishes research monographs and graduate level textbooks from all fields of mathematics. The individual volumes are intended to give a reasonably comprehensive and selfcontained account of their particular subject. They present mathematical results that are new or have not been accessible previously in the literature. Previously published in this series: Richard Arratia, A.D. Barbour and Simon Tavaré, Logarithmic Combinatorial Structures: A Probabilistic Approach Demetrios Christodoulou, The Formation of Shocks in 3-Dimensional Fluids Sergei Buyalo and Viktor Schroeder, Elements of Asymptotic Geometry Demetrios Christodoulou, The Formation of Black Holes in General Relativity Joachim Krieger and Wilhelm Schlag, Concentration Compactness for Critical Wave Maps Jean-Pierre Bourguignon, Oussama Hijazi, Jean-Louis Milhorat, Andrei Moroianu and Sergiu Moroianu, A Spinorial Approach to Riemannian and Conformal Geometry Kazuhiro Fujiwara and Fumiharu Kato, Foundations of Rigid Geometry I Demetrios Christodoulou, The Shock Development Problem Diogo Arsénio and Laure Saint-Raymond, From the Vlasov–Maxwell–Boltzmann System to Incompressible Viscous Electro-magneto-hydrodynamics, Vol. 1 Paul Balmer and Ivo Dell’Ambrogio, Mackey-2 Functors and Mackey-2 Motives Massimiliano Berti Philippe Bolle Quasi-Periodic Solutions of Nonlinear Wave Equations on the d-Dimensional Torus Authors: Massimiliano Berti Philippe Bolle SISSA Laboratoire de Mathématiques d’Avignon, EA2151 Via Bonomea 265 Avignon Université 34136 Trieste 84140 Avignon Italy France e-mail: [email protected] e-mail: [email protected] 2020 Mathematics Subject Classification: Primary: 37K55, 37K50, 35L05; secondary: 35Q55 Key words: Infinite-dimensional Hamiltonian systems, nonlinear wave equation, KAM for PDEs, quasi-periodic solutions and invariant tori, small divisors, Nash–Moser theory, multiscale analysis ISBN 978-3-03719-211-5 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de. Published by EMS Press, an imprint of the European Mathematical Society – EMS – Publishing House GmbH Institut für Mathematik Technische Universität Berlin Straße des 17. Juni 136 10623 Berlin Germany https://ems.press © 2020 European Mathematical Society - EMS - Publishing House GmbH Typeset using the authors’ TEX files: le-tex publishing services GmbH, Leipzig, Germany Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany ∞ Printed on acid free paper 9 8 7 6 5 4 3 2 1 Preface Manypartialdifferentialequations(PDEs)arisinginphysicscanbeseenasinfinite- dimensionalHamiltoniansystems @ z DJ.r H/.z/; z 2E; (0.0.1) t z where the Hamiltonian function HW E ! R is defined on an infinite-dimensional Hilbert space E of functions z WD z.x/, and J is a nondegenerate antisymmetric operator. Somemainexamplesarethenonlinearwave(NLW)equation u (cid:2)(cid:2)uCV.x/uCg.x;u/D0; (0.0.2) tt thenonlinearSchro¨dinger(NLS)equation,thebeamequation,thehigher-dimensional membraneequation,thewater-wavesequations,i.e.,theEulerequationsofhydrody- namicsdescribingtheevolutionofanincompressibleirrotationalfluidundertheac- tionofgravityandsurfacetension,aswellasitsapproximatemodelsliketheKorte- wegdeVries(KdV),Boussinesq,Benjamin–Ono,andKadomtsev–Petviashvili(KP) equations,amongmanyothers. Wereferto[102]forageneralintroductiontoHamil- tonianPDEs. Inthismonographweshalladopta“dynamicalsystems”pointofviewregarding the NLW equation (0.0.2) equipped with periodic boundary conditions x 2 Td WD .R=2(cid:3)Z/d as an infinite-dimensional Hamiltonian system, and we shall prove the existenceofCantorfamiliesoffinite-dimensionalinvarianttorifilledbyquasiperiodic solutionsof(0.0.2). ThefirstresultsinthisdirectionwereobtainedbyBourgain[42]. The search for invariant sets for the flow is an essential change of paradigm in the studyofhyperbolicequationswithrespecttothemoretraditionalpursuitoftheinitial value problem. This perspective has allowed the discovery of many new results, inspiredbyfinite-dimensionalHamiltoniansystems,forHamiltonianPDEs. When the space variable x belongs to a compact manifold, say x 2 Œ0;(cid:3)(cid:4) with Dirichlet boundary conditions or x 2 Td (periodic boundary conditions), the dy- namicsofaHamiltonian PDE(0.0.1), like (0.0.2), is expectedto havea“recurrent” behaviorintime,withmanyperiodicandquasiperiodicsolutions,i.e.,solutions(de- finedforalltimes)oftheform u.t/DU.!t/2E where T(cid:2) 3' 7!U.'/2E (0.0.3) is continuous, 2(cid:3)-periodic in the angular variables ' WD .' ;:::;' / and the fre- 1 (cid:2) quencyvector! 2R(cid:2) isnonresonant,namely!(cid:3)`¤0,8`2Z(cid:2)nf0g. When(cid:5) D1, the solutionu.t/is periodicin time, with period2(cid:3)=!. IfU.!t/ is a quasiperiodic solutionthen,sincetheorbitf!tgt2R isdenseonT(cid:2),thetorusmanifoldU.T(cid:2)/(cid:4)E isinvariantundertheflowof(0.0.1). vi Notethatthelinearwaveequation(0.0.2)withg D0, u (cid:2)(cid:2)uCV.x/uD0; x 2Td ; (0.0.4) tt possessesmanyquasiperiodicsolutions. Indeedtheself-adjointoperator(cid:2)(cid:2)CV.x/ hasacompleteL2orthonormalbasisofeigenfunctions‰ .x/,j 2N,witheigenval- j ues(cid:6) !C1, j .(cid:2)(cid:2)CV.x//‰ .x/D(cid:6) ‰ .x/; j 2N: (0.0.5) j j j Suppose for simplicity that (cid:2)(cid:2) C V.x/ > 0, so that the eigenvalues (cid:6) D (cid:7)2, j j (cid:7) >0,arepositive,andallthesolutionsof(0.0.4)are j X ˛ cos.(cid:7) t C(cid:8) /‰ .x/; ˛ ; (cid:8) 2R; (0.0.6) j j j j j j j2N which,dependingontheresonancepropertiesofthelinearfrequencies(cid:7) D(cid:7) .V/, j j are periodic, quasiperiodic, or almost-periodic in time (i.e., quasiperiodic with in- finitelymanyfrequencies). Whathappenstothesesolutionsundertheeffectofthenonlinearityg.x;u/? There exist special nonlinear equations for which all the solutions are still peri- odic,quasiperiodic,oralmost-periodicintime,forexampletheKdV,Benjamin–Ono, and1-dimensionaldefocusingcubicNLSequations. Thesearecompletelyintegrable PDEs. However, for generic nonlinearities, one expects, in analogy with the cele- bratedPoincare´nonexistencetheoremofprimeintegralsfornearlyintegrableHamil- toniansystems,thatthisisnotthecase. On the other hand, for sufficiently small Hamiltonian perturbations of a nonde- generate integrable system in Tn (cid:5) Rn, the classical Kolmogorov–Arnold–Moser (KAM) theoremprovesthe persistenceof quasiperiodicsolutions with Diophantine frequencyvectors! 2Rn,i.e.,vectorssatisfyingforsome(cid:9) >0and(cid:10) (cid:6)n(cid:2)1,the nonresonancecondition (cid:9) j!(cid:3)`j(cid:6) ; 8`2Znnf0g: (0.0.7) j`j(cid:3) Such frequenciesform a Cantor set of Rn of positive measure if (cid:10) > n(cid:2)1. These quasiperiodicsolutions(whichdenselyfillinvariantLagrangiantori)wereconstructed by Kolmogorov [99] and Arnold [2] for analytic systems using an iterative New- tonscheme,andbyMoser[105–107]fordifferentiableperturbationsbyintroducing smoothing operators. This scheme then gave rise to abstract Nash–Moser implicit function theorems like the ones proved by Zehnder [128,129] (see also [109] and Section2.1). Whathappensforinfinite-dimensionalsystemslikePDEs? (cid:7) The centralquestionofKAM theory forPDEs is: do“most” of the periodic, quasiperiodic, or almost-periodic solutions of an integrable PDE (linear or nonlinear)persist, just slightlydeformed, underthe effectof anonlinearper- turbation? vii KAMtheoryforPDEsstartedabitmorethanthirtyyearsagowiththepioneering worksofKuksin[100]andWayne[126]on theexistenceofquasiperiodicsolutions forsemilinearperturbationsof1-dimensionallinearwaveandSchro¨dingerequations intheintervalŒ0;(cid:3)(cid:4). TheseresultsarebasedonanextensionoftheKAMperturbative approach developed for the search for lower-dimensional tori in finite-dimensional systems (see [56,107,111]) and relies on the verification of the so-called second- orderMelnikovnonresonanceconditions. NowadaysKAMtheoryfor1-dimensionalPDEs hasreachedasatisfactorylevel of comprehension concerning quasiperiodic solutions, while questions concerning almost-periodicsolutionsremain quite open. The knownresults include bifurcation ofsmall-amplitudesolutions[17,103,113],perturbationsoflargefinitegapsolutions [29,34,97,101,102],extensionto periodicboundaryconditions[36,48,54,71],use ofweaknondegeneracyconditions[12], nonlinearitieswith derivatives[19,93,130] uptoquasilinearones[6–8,65],includingwater-wavesequations[5,32],applications toquantumharmonicoscillators[10,11,82],andafewexamplesofalmost-periodic solutions[43,114]. WedescribethesedevelopmentsinmoredetailinChapter2. Also,KAMtheoryformultidimensionalPDEsstillcontainsfewresultsandasat- isfactorypictureisunderconstruction.Ifthespacedimensiond istwoormore,major difficultiesare: 1. Theeigenvalues(cid:7)2 oftheSchro¨dingeroperator(cid:2)(cid:2)CV.x/in(0.0.5)appear j in huge clusters of increasing size. For example, if V.x/ D 0, and x 2 Td, theyare jkj2 Dk2C(cid:3)(cid:3)(cid:3)Ck2; k D.k ;:::;k /2Zd: 1 d 1 d 2. Theeigenfunctions‰ .x/maybe“notlocalized”withrespecttotheexponen- j tials. Roughlyspeaking,thismeansthatthereisnoone-to-onecorrespondence h W N ! Zd suchthatthe entries.‰j;eik(cid:2)x/L2 ofthechange-of-basismatrix (between.‰j/j2Nand.eik(cid:2)x/k2Zd)decayrapidlytozeroasjk(cid:2)h.j/j !1. Thefirstexistenceresultoftime-periodicsolutionsfortheNLWequation u (cid:2)(cid:2)uCmu Du3Ch:o:t:; x 2Td; d (cid:6)2; tt wasprovedbyBourgainin[37],byextendingtheCraig–Wayneapproach[54],origi- nallydevelopedifx 2T. Furtherexistenceofresultsofperiodicsolutionshavebeen provedbyBerti andBolle [22]formerelydifferentiablenonlinearities, Berti, Bolle, andProcesi[26]forZoll manifolds, Gentile andProcesi[76]usingLindstedtseries techniques,andDelort[55]forNLSequationsusingparadifferentialcalculus. The first breakthrough result about the existence of quasiperiodic solutions for spacemultidimensionalPDEswasprovedbyBourgain[39]foranalyticHamiltonian NLSequationsoftheform iu D(cid:2)uCM uC"@ H.u;uN/ (0.0.8) t (cid:4) uN with x 2 T2, where M D Op.(cid:11) / is a Fourier multiplier supported on finitely (cid:4) k many sites E (cid:4) Z2, i.e., (cid:11) D 0, 8k 2 Z2 nE. The (cid:11) , k 2 E, play the role of k k viii external parameters used to verify suitable nonresonance conditions. Note that the eigenfunctions of (cid:2) C M are the exponentials eik(cid:2)x and so the above-mentioned (cid:4) problem2isnotpresent. Later, using subharmonic analysis tools previously developed for quasiperiodic AndersonlocalizationtheorybyBourgain,Goldstein,andSchlag[44],Bourgainwas able in [41,42] to extend this result in any space dimension d, and also for NLW equationsoftheform u (cid:2)(cid:2)uCM uC"F0.u/D0; x 2Td ; (0.0.9) tt (cid:4) where F.u/ is a polynomial in u. Here F0.u/ denotes the derivative of F. We also mentiontheexistenceresults ofquasiperiodicsolutionsbyBourgainandWang [45,46] for NLS and NLW equations under a random perturbation. The stochastic case is a priori easier than the deterministic one because it is simpler to verify the nonresonanceconditionswitharandomvariable. Quasiperiodic solutions u.t;x/ D U.!t;x/ of (0.0.9) with a frequency vector ! 2R(cid:2),namelysolutionsU.';x/,' 2T(cid:2),of .!(cid:3)@ /2U (cid:2)(cid:2)U CM U C"F0.U/D0; (0.0.10) ' (cid:4) areconstructedbyaNewtonscheme. Themainanalysisconcernsfinite-dimensional restrictionsofthequasiperiodicoperatorsobtainedbylinearizing(0.0.10)ateachstep oftheNewtoniteration, (cid:2) (cid:3) ˘ .!(cid:3)@ /2(cid:2)(cid:2)CM C"b.';x/ ; (0.0.11) N ' (cid:4) jHN where b.';x/ D F00.U.';x// and ˘ denotes the projection on the finite- N dimensionalsubspace ( ) X H WD hD h ei.`(cid:2)'Ck(cid:2)x/;`2 Z(cid:2);k 2Zd : N `;k j.`;k/j(cid:3)N The matrix that represents (0.0.11) in the exponential basis is a perturbation of the diagonalmatrixDiag.(cid:2).!(cid:3)`/2Cjkj2C(cid:11)k/withoff-diagonalentries".bb`(cid:4)`0;k(cid:4)k0/ that decay exponentially to zero as j.` (cid:2) `0;k (cid:2) k0/j ! C1, assuming that b is analytic (or subexponentially, if b is Gevrey). The goal is to prove that such a ma- trix is invertible for most values of the external parameters, and that its inverse has an exponential (or Gevrey) off-diagonal decay. It is not difficult to impose lower boundsfortheeigenvaluesoftheself-adjointoperator(0.0.11)formostvaluesofthe parameters. These first-order Melnikov nonresonanceconditions are essentially the minimalassumptionsforprovingthepersistenceofquasiperiodicsolutionsof(0.0.9), andprovideestimatesoftheinverseoftheoperator(0.0.11)inL2-norm. Inorderto provefastoff-diagonaldecayestimatesfortheinversematrix,Bourgain’stechniqueis ix a“multiscale”inductiveanalysisbasedontherepeateduseofthe“resolventidentity.” Anessentialingredientisthatthe“singular”sites ˇ ˇ .`;k/2Z(cid:2) (cid:5)Zd suchthat ˇ(cid:2).!(cid:3)`/2Cjkj2C(cid:11) ˇ(cid:8)1 (0.0.12) k are separated into clusters that are sufficiently distant from one another. However, the information (0.0.12) about just the linear frequencies of (0.0.9) is not sufficient (unlikefortime-periodicsolutions[37])inordertoprovethattheinversematrixhas an exponential(orGevrey)off-diagonaldecay. Also, finernonresonanceconditions at each scale along the induction need to be verified. We describe the multiscale approachinSection2.4andweprovenovelmultiscaleresultsinChapter5. These techniques have been extended in the recent work of Wang [125] for the nonlinearKlein–Gordonequation u (cid:2)(cid:2)uCuCupC1 D0; p 2N; x 2Td ; tt that, unlike (0.0.9), is parameter independent. A key step is to verify that suitable nonresonance conditions are fulfilled for most “initial data.” We refer to [124] for acorrespondingresultfortheNLSequation. AnotherstreamofimportantresultsformultidimensionalPDEswereinaugurated inthebreakthroughpaperbyEliassonandKuksin[61]fortheNLSequation(0.0.8). Inthispapertheauthorsareabletoblockdiagonalize,andreducetoconstantcoeffi- cients,thequasiperiodicHamiltonianoperatorobtainedateachstepoftheiteration. This KAM reducibility approach extends the perturbative theory developed for 1- dimensionalPDEs, by verifyingthe so-calledsecond-orderMelnikov nonresonance conditions. It allows one to also prove directly the linear stability of the quasiperi- odicsolutions.Otherresultsinthisdirectionhavebeenprovedforthe2-dimensional- cubicNLSequationbyGeng,Xu,andYou[75],inanyspacedimensionandarbitrary polynomialnonlinearitiesbyProcesiandProcesi[117,118],andforbeamequations by Geng and You [72] and Eliasson, Gre´bert, and Kuksin [58]. Unfortunately, the second-orderMelnikovconditionsareviolatedforNLWequationsforwhichananal- ogousreducibilityresultdoesnothold. WedescribetheKAMreducibilityapproach withPDEapplicationsinSections2.2and2.3. Wenowpresentmoreindetailthegoalofthisresearchmonograph.Themainre- sultistheexistenceofsmall-amplitudetime-quasiperiodicsolutionsforautonomous NLWequationsoftheform u (cid:2)(cid:2)uCV.x/uCg.x;u/D0; tt x 2 Td; g.x;u/Da.x/u3CO.u4/; (0.0.13) inanyspacedimensiond (cid:6) 1,whereV.x/isasmoothmultiplicativepotentialsuch that(cid:2)(cid:2)CV.x/>0,andthenonlinearityisC1. GivenafinitesetS(cid:4) N(tangential sites),weconstructquasiperiodicsolutionsu.!t;x/withfrequencyvector.!j/j2S, oftheform X u.!t;x/D ˛ cos.! t/‰ .x/Cr.!t;x/; ! D(cid:7) CO.j˛j/; (0.0.14) j j j j j j2S