ebook img

Quasi-Hopf Algebras: A Categorical Approach (Encyclopedia of Mathematics and its Applications) PDF

546 Pages·2019·4.352 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quasi-Hopf Algebras: A Categorical Approach (Encyclopedia of Mathematics and its Applications)

QUASI-HOPF ALGEBRAS ThisisthefirstbooktobededicatedentirelytoDrinfeld’squasi-Hopfalgebras. Idealforgraduatestudentsandresearchersinmathematicsandmathematical physics,thistreatmentislargelyself-contained,takingthereaderfromthebasics, withcompleteproofs,tomuchmoreadvancedtopics,withalmostcompleteproofs. Manyoftheproofsarebasedongeneralcategoricalresults;thesameapproachcan thenbeusedinthestudyofotherHopf-typealgebras,forexampleTuraevorZunino Hopfalgebras,Hom-Hopfalgebras,Hopfishalgebras,andingeneralanyalgebrafor whichthecategoryofrepresentationsismonoidal. Newcomerstothesubjectwillappreciatethedetailedintroductionto(braided) monoidalcategories,(co)algebrasandtheothertoolstheywillneedinthisarea. Moreadvancedreaderswillbenefitfromhavingrecentresearchgatheredinone place,withopenquestionstoinspiretheirownresearch. EncyclopediaofMathematicsandItsApplications Thisseriesisdevotedtosignificanttopicsorthemesthathavewideapplicationin mathematicsormathematicalscienceandforwhichadetaileddevelopmentofthe abstracttheoryislessimportantthanathoroughandconcreteexplorationofthe implicationsandapplications. BooksintheEncyclopediaofMathematicsandItsApplicationscovertheir subjectscomprehensively.Lessimportantresultsmaybesummarizedasexercisesat theendsofchapters.Fortechnicalities,readerscanbereferredtothebibliography, whichisexpectedtobecomprehensive.Asaresult,volumesareencyclopedic referencesormanageableguidestomajorsubjects. EncyclopediaofMathematicsanditsApplications AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridge UniversityPress.Foracompleteserieslistingvisit www.cambridge.org/mathematics. 122 S.KhrushchevOrthogonalPolynomialsandContinuedFractions 123 H.NagamochiandT.IbarakiAlgorithmicAspectsofGraphConnectivity 124 F.W.KingHilbertTransformsI 125 F.W.KingHilbertTransformsII 126 O.CalinandD.-C.ChangSub-RiemannianGeometry 127 M.Grabischetal.AggregationFunctions 128 L.W.BeinekeandR.J.Wilson(eds.)withJ.L.GrossandT.W.TuckerTopicsinTopological GraphTheory 129 J.Berstel,D.PerrinandC.ReutenauerCodesandAutomata 130 T.G.FaticoniModulesoverEndomorphismRings 131 H.MorimotoStochasticControlandMathematicalModeling 132 G.SchmidtRelationalMathematics 133 P.KornerupandD.W.MatulaFinitePrecisionNumberSystemsandArithmetic 134 Y.CramaandP.L.Hammer(eds.)BooleanModelsandMethodsinMathematics,ComputerScience, andEngineering 135 V.Berthe´andM.Rigo(eds.)Combinatorics,AutomataandNumberTheory 136 A.Krista´ly,V.D.Ra˘dulescuandC.VargaVariationalPrinciplesinMathematicalPhysics,Geometry, andEconomics 137 J.BerstelandC.ReutenauerNoncommutativeRationalSerieswithApplications 138 B.CourcelleandJ.EngelfrietGraphStructureandMonadicSecond-OrderLogic 139 M.FiedlerMatricesandGraphsinGeometry 140 N.VakilRealAnalysisthroughModernInfinitesimals 141 R.B.ParisHadamardExpansionsandHyperasymptoticEvaluation 142 Y.CramaandP.L.HammerBooleanFunctions 143 A.Arapostathis,V.S.BorkarandM.K.GhoshErgodicControlofDiffusionProcesses 144 N.Caspard,B.LeclercandB.MonjardetFiniteOrderedSets 145 D.Z.ArovandH.DymBitangentialDirectandInverseProblemsforSystemsofIntegraland DifferentialEquations 146 G.DassiosEllipsoidalHarmonics 147 L.W.BeinekeandR.J.Wilson(eds.)withO.R.OellermannTopicsinStructuralGraphTheory 148 L.Berlyand,A.G.KolpakovandA.NovikovIntroductiontotheNetworkApproximationMethodfor MaterialsModeling 149 M.BaakeandU.GrimmAperiodicOrderI:AMathematicalInvitation 150 J.Borweinetal.LatticeSumsThenandNow 151 R.SchneiderConvexBodies:TheBrunn–MinkowskiTheory(SecondEdition) 152 G.DaPratoandJ.ZabczykStochasticEquationsinInfiniteDimensions(SecondEdition) 153 D.Hofmann,G.J.SealandW.Tholen(eds.)MonoidalTopology 154 M.CabreraGarc´ıaandA´.Rodr´ıguezPalaciosNon-AssociativeNormedAlgebrasI:TheVidav–Palmerand Gelfand–NaimarkTheorems 155 C.F.DunklandY.XuOrthogonalPolynomialsofSeveralVariables(SecondEdition) 156 L.W.BeinekeandR.J.Wilson(eds.)withB.ToftTopicsinChromaticGraphTheory 157 T.MoraSolvingPolynomialEquationSystemsIII:AlgebraicSolving 158 T.MoraSolvingPolynomialEquationSystemsIV:BuchbergerTheoryandBeyond 159 V.Berthe´andM.Rigo(eds.)Combinatorics,WordsandSymbolicDynamics 160. B.RubinIntroductiontoRadonTransforms:WithElementsofFractionalCalculusandHarmonicAnalysis 161 M.GherguandS.D.TaliaferroIsolatedSingularitiesinPartialDifferentialInequalities 162 G.MolicaBisci,V.D.RadulescuandR.ServadeiVariationalMethodsforNonlocalFractionalProblems 163 S.WagonTheBanach–TarskiParadox(SecondEdition) 164 K.BroughanEquivalentsoftheRiemannHypothesisI:ArithmeticEquivalents 165 K.BroughanEquivalentsoftheRiemannHypothesisII:AnalyticEquivalents 166 M.BaakeandU.Grimm(eds.)AperiodicOrderII:CrystallographyandAlmostPeriodicity 167 M.CabreraGarc´ıaandA´.Rodr´ıguezPalaciosNon-AssociativeNormedAlgebrasII:Representation TheoryandtheZel’manovApproach 168 A.Yu.Khrennikov,S.V.KozyrevandW.A.Zu´n˜iga-GalindoUltrametricPseudodifferentialEquations andApplications 169 S.R.FinchMathematicalConstantsII 170 J.Kraj´ıcˇekProofComplexity 171 D.Bulacu,S.Caenepeel,F.PanaiteandF.VanOystaeyenQuasi-HopfAlgebras Encyclopedia of Mathematics and its Applications Quasi-Hopf Algebras A Categorical Approach DANIEL BULACU UniversitateadinBucures¸ti,Romania STEFAAN CAENEPEEL VrijeUniversiteitBrussel,Belgium FLORIN PANAITE InstituteofMathematicsoftheRomanianAcademy FREDDY VAN OYSTAEYEN UniversiteitAntwerpen,Belgium UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108427012 DOI:10.1017/9781108582780 ©DanielBulacu,StefaanCaenepeel,FlorinPanaiteandFreddyVanOystaeyen2019 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2019 PrintedandboundinGreatBritainbyClaysLtd,ElcografS.p.A. AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData Names:Bulacu,Daniel,1973–author.|Caenepeel,Stefaan,1956–author.| Panaite,Florin,1970–author.|Oystaeyen,F.Van,1947–author. Title:Quasi-Hopfalgebras:acategoricalapproach/DanielBulacu (UniversitateadinBucureti,Romania),StefaanCaenepeel(Vrije Universiteit,Amsterdam),FlorinPanaite(InstituteofMathematicsofthe RomanianAcademy),FreddyvanOystaeyen(UniversiteitAntwerpen,Belgium). Description:Cambridge;NewYork,NY:CambridgeUniversityPress,[2019]| Series:Encyclopediaofmathematicsanditsapplications;171|Includes bibliographicalreferencesandindex. Identifiers:LCCN2018034517|ISBN9781108427012(hardback) Subjects:LCSH:Hopfalgebras.|Tensorproducts.|Tensoralgebra. Classification:LCCQA613.8.B852019|DDC512/.55–dc23 LCrecordavailableathttps://lccn.loc.gov/2018034517 ISBN978-1-108-42701-2Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Dedicatedtoourwives Adriana,Lieve,Cristina,Danielle. Contents Preface pagexi 1 MonoidalandBraidedCategories 1 1.1 MonoidalCategories 1 1.2 ExamplesofMonoidalCategories 7 1.2.1 TheCategoryofSets 7 1.2.2 TheCategoryofVectorSpaces 7 1.2.3 TheCategoryofBimodules 7 1.2.4 TheCategoryofG-gradedVectorSpaces 8 1.2.5 TheCategoryofEndo-functors 13 1.2.6 AStrictCategoryAssociatedtoaMonoidalCategory 15 1.3 MonoidalFunctors 16 1.4 MacLane’sStrictificationTheoremforMonoidalCategories 25 1.5 (Pre-)BraidedMonoidalCategories 28 1.6 RigidMonoidalCategories 38 1.7 TheLeftandRightDualFunctors 43 1.8 BraidedRigidMonoidalCategories 48 1.9 Notes 54 2 AlgebrasandCoalgebrasinMonoidalCategories 55 2.1 AlgebrasinMonoidalCategories 55 2.2 CoalgebrasinMonoidalCategories 65 2.3 TheDualCoalgebra/AlgebraofanAlgebra/Coalgebra 70 2.4 CategoriesofRepresentations 78 2.5 CategoriesofCorepresentations 82 2.6 BraidedBialgebras 87 2.7 BraidedHopfAlgebras 95 2.8 Notes 101 3 Quasi-bialgebrasandQuasi-HopfAlgebras 103 3.1 Quasi-bialgebras 103 3.2 Quasi-HopfAlgebras 110 3.3 ExamplesofQuasi-bialgebrasandQuasi-HopfAlgebras 119 viii Contents 3.4 TheRigidMonoidalStructureof MfdandMfd 125 H H 3.5 TheReconstructionTheoremforQuasi-HopfAlgebras 128 3.6 SovereignQuasi-HopfAlgebras 131 3.7 DualQuasi-HopfAlgebras 135 3.8 FurtherExamplesof(Dual)Quasi-HopfAlgebras 141 3.9 Notes 146 4 Module(Co)Algebrasand(Bi)ComoduleAlgebras 147 4.1 ModuleAlgebrasoverQuasi-bialgebras 147 4.2 ModuleCoalgebrasoverQuasi-bialgebras 154 4.3 ComoduleAlgebrasoverQuasi-bialgebras 162 4.4 BicomoduleAlgebrasandTwo-sidedCoactions 168 4.5 Notes 176 5 CrossedProducts 177 5.1 SmashProducts 177 5.2 Quasi-smashProductsandGeneralizedSmashProducts 185 5.3 EndomorphismH-moduleAlgebras 188 5.4 Two-sidedSmashandCrossedProducts 191 ∗ 5.5 H -HopfBimodules 196 5.6 DiagonalCrossedProducts 201 5.7 L–R-smashProducts 214 5.8 ADualityTheoremforQuasi-HopfAlgebras 220 5.9 Notes 223 6 Quasi-HopfBimoduleCategories 225 6.1 Quasi-HopfBimodules 225 6.2 TheDualofaQuasi-HopfBimodule 230 6.3 StructureTheoremsforQuasi-HopfBimodules 235 6.4 TheCategories MH and M 239 H H H 6.5 AStructureTheoremforComoduleAlgebras 246 6.6 Coalgebrasin MH 249 H H 6.7 Notes 251 7 Finite-DimensionalQuasi-HopfAlgebras 253 7.1 FrobeniusAlgebras 253 7.2 IntegralTheory 261 7.3 SemisimpleQuasi-HopfAlgebras 268 7.4 SymmetricQuasi-HopfAlgebras 273 7.5 CointegralTheory 279 7.6 Integrals,CointegralsandtheFourthPoweroftheAntipode 288 7.7 AFreenessTheoremforQuasi-HopfAlgebras 299 7.8 Notes 303 8 Yetter–DrinfeldModuleCategories 305 8.1 TheLeftandRightCenterConstructions 305

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.