Astronomy&Astrophysicsmanuscriptno.Fl182 February2,2008 (DOI:willbeinsertedbyhandlater) Quasar jet emission model applied to the microquasar GRS1915+105 M.Tu¨rler1,2,T.J.-L.Courvoisier1,2,S.Chaty3,4,andY.Fuchs4 1 INTEGRALScienceDataCentre,ch.d’Ecogia16,1290Versoix,Switzerland 4 2 ObservatoiredeGene`ve,ch.desMaillettes51,1290Sauverny,Switzerland 0 3 Universite´Paris7,2placeJussieu,F-75005Paris,France 0 4 Serviced’Astrophysique,DSM/DAPNIA/SAp,CEA/Saclay,F-91191Gif-sur-Yvette,Cedex,France 2 n Received18December2003/Accepted14January2004 a J Abstract. Thetruenatureoftheradioemittingmaterialobservedtobemovingrelativisticallyinquasarsandmicroquasars 4 isstillunclear.Themicroquasarcommunityusuallyinterpretsthemasdistinctcloudsofplasma,whiletheextragalacticcom- 1 munityprefersashockwavemodel.HereweshowthatthesynchrotronvariabilitypatternofthemicroquasarGRS1915+105 observed on 15 May 1997 can be reproduced by the standard shock model for extragalactic jets, which describes well the 1 long-termbehaviourofthequasar3C273.Thisstrengthenstheanalogybetweenthetwoclassesofobjectsandsuggeststhat v thephysicsofrelativisticjetsisindependentofthemassoftheblackhole.ThemodelparameterswederiveforGRS1915+105 5 correspondtoaratherdissipativejetflow,whichisonlymildlyrelativisticwithaspeedof0.60c.Wecanalsoestimatethatthe 7 shockwavesforminthejetatadistanceofabout1AUfromtheblackhole. 2 1 0 Keywords.radiationmechanisms:non-thermal–stars:individual:GRS1915+105–infrared:stars–radiocontinuum:stars 4 0 / 1. Introduction 2002). This discovery, by strengthening the analogy between h p galacticandextragalacticobjects,risesthequestiononthetrue Microquasars are high-energy binary systems exhibiting jets - natureofthesynchrotronemittingmaterial.Isthemicroquasar o with apparent superluminal motion suggesting that they are plasmoid model or the quasar shock wave model the correct r the miniature replicates in our Galaxy of the distant quasars t interpretation? Atoyan&Aharonian (1999) showed that ex- s (Mirabel&Rodriguez1998).GRS1915+105wasthefirstmi- a panding clouds of relativistic plasma cannot describe the ob- v: croquasardiscovered(Mirabel&Rodriguez1994)andcanbe servations unless there is an in situ electron acceleration pro- considered as an archetypical object of its class. Its radio i cess.Analternativemodelofavariablecontinuousjetalsofails X emission can be divided into three distinct states: a plateau to explain the observedflux oscillations in GRS1915+105as r jet, pre- and post-plateau flares and radio oscillation events it leads to unphysically large electron densities (Collinsetal. a (Klein-Woltetal. 2002). The flares are the most powerful 2003). There is therefore growing evidence that the emitting events. Their emission arises from two emitting blobs ob- electronsmustbereacceleratedalongthejet,asitisthecasein served to move relativistically in opposite directions up to ashockwavemechanism(Kaiseretal.2000). about 3000AU from the core (Fenderetal. 1999). This Tofurthertesttheshockwaveinterpretation,weapplyhere has been interpreted as evidence for pairs of plasma clouds to GRS1915+105the same model used to describe the long- symmetrically ejected on both sides of the accretion disc termvariabilitybehaviourof3C273fromsubmillimetertora- (Rodr´ıguez&Mirabel 1999). This plasmoid ejection model diowavelengths(Tu¨rleretal.2000).Thismodelderivedfrom is also used to explain the less powerful oscillation events the model of Marscher&Gear (1985) describes analytically arising in a shorter jet extending only up to ∼ 30–50AU the evolution of synchrotronemission resulting from a shock (Dhawanetal. 2000). This interpretation is supported by the wave moving down a relativistic jet. Compared to the model observationofsimultaneousX-raydips,suggestingthatmate- of vanderLaan (1966) for an expanding plasma cloud it has rialfromthedisappearinginneraccretiondiscisejectedfrom the advantage to include the effects of both synchrotron and the black hole vicinity (Bellonietal. 1997a,b; Mirabeletal. inverse-Comptonenergylosses. 1998;Eikenberryetal.1998). Observational evidence for this phenomenon has recently alsobeenobtainedfortheactivegalaxy3C120(Marscheretal. 2. DataandModel Send offprint requests to: M. Tu¨rler, e-mail: The data we use here are the radio oscillation events of [email protected] GRS1915+105 measured on 15 May 1997 (Mirabeletal. 2 M.Tu¨rleretal.:QuasarjetemissionmodelappliedtothemicroquasarGRS1915+105 Fig.1. Modelfittotheinfraredandra- dio observationsof GRS1915+105on 15 May 1997. The points in the four panels show the time dependence of the emission at observed wavelengths of2.2µm,2cm,3.6cmand6cm,from top to bottom. The 2.2µm data are dereddenedusinga K-bandabsorption of 2.2mag (Chapuis&Corbel 2004). The continuous red line is the best fit model, it is the sum of the emissions fromtheapproachingjet(blueline)and therecedingjet(greenline)plusacon- stant flux at 2.2µm fixed at 21.8mJy. Red dotted lines separate the emission from distinct events. In the top panel, the onsettimesofthe outburstsarein- dicated by arrows and the grey line is the X-ray light curve in the 2–60keV bandinunitsof500counts−1. 1998; Dhawanetal. 2000). The Very LargeArray (VLA) ob- metric in both jets. Starting as a sound wave, the disturbance servationshavetheadvantagetobeverywellsampledatthree willbecomesupersonicatsomepointbecauseofthedecreas- different radio wavelengths (see Fig 1). The data start with a ingpressurealongthejet.Theresultingshockwavewillprop- fluxdecreasefollowedbysuccessiveoutburstsspacedbytypi- agate downthe jet and accelerateparticlescrossing the shock cally1–2hours.Theseoscillationeventsareinterpretedasejec- front. Accelerated electrons will then emit synchrotronradia- tions in a small jet that was observed simultaneously by the tionintheincreasedmagneticfieldofthecompressedplasma Very Long Baseline Array (VLBA) (see Dhawanetal. 2000, behindtheshockfront.Theevolutionoftheemittedspectrum Fig.9).Theirevolutionfromshorttolongwavelengthsisrem- dependson the dominantenergy loss mechanism of the elec- iniscentoftheobservedbehaviourofthebrightquasar3C273 trons.Justaftertheonsetoftheshock,inverse-Comptonradi- onatimescaleofyears(Tu¨rleretal.2000). ation is likely to be dominant,then synchrotronlosses should Additional data from the United Kingdom Infrared become more important and finally adiabatic expansion, due Telescope (UKIRT) in the 2.2µm infrared band show a flux tothewideningofthejet,willdominatetheenergylosses.As enhancement which is very likely the synchrotron precursor a consequence, the turnover of the self-absorbed synchrotron ofthelastradiooutburst(Mirabeletal.1998).Thesimultane- spectrumwillmovefromhighto lowfrequenciesfollowinga ousX-raymeasurementsbytheRossi X-rayTimingExplorer characteristicthree-stagepath(seeFig.2). (RXTE)inthe2–60keVbandpresenttwoflaresapparentlyas- sociated with two consecutiveradiooutbursts.ThisX-ray be- 3. Method haviourisindeedquitedifferentfromthelightcurveobserved on 9 September 1997 which displays very rapid oscillations To applythe modeloutlinedaboveto the observedvariability followed by a clear X-ray dip (Mirabeletal. 1998). A possi- of GRS1915+105 we use a methodology similar to the one ble interpretation of this difference is that the X-ray flares of usedpreviouslyfor3C273(Tu¨rleretal.2000).Therearehow- 15May1997arenotemittedbytheaccretiondisc,butarisein ever several modifications mainly implied by the specificity the jet because of inverse-Comptonscattering of synchrotron of GRS1915+105,but includingalso some more generalim- photons. provements.Animportantdifferencebetweenthemodellingof The Marscher&Gear (1985) shock model assumes a 3C273 and GRS1915+105 is that for the latter the emission steadyrelativisticjetflowthatcanbedisturbedbyanyincrease from the receding jet is well observed (Mirabel&Rodriguez ofthepressureofthejetplasmaorofitsbulkvelocity.Ifthis 1994;Fenderetal.1999;Rodr´ıguez&Mirabel1999)andthus disturbanceisrelatedtotheaccretiondisc,itislikelytobesym- cannot be neglected. We take this into account by modelling M.Tu¨rleretal.:QuasarjetemissionmodelappliedtothemicroquasarGRS1915+105 3 To have a more realistic model we replaced by progres- sivetransitionsthelow-andhigh-frequencybreaksofthesyn- chrotron spectrum (see Tu¨rleretal. 2000, Fig. 2) and we smoothedoutthesharpedgesofthethree-stageevolution.The normalization of the synchrotron spectrum was redefined as the extrapolationof the optically thin slope, as in the original Marscher&Gear(1985) model.Finally,weintroduceda new parameter to allow the frequency ratio ν /ν of the low fre- h m quencybreaktotheturnoverofthespectrumtovarywithtime. Thisallowstodescribeasynchrotronsourcewhichisfirstin- homogeneous and becomes progressively homogeneous near thetransitiontothefinaladiabaticexpansionstage,asitseems tobethecaseinGRS1915+105(seeFig.2a,b). The model presented here has a total of 34 free parame- ters. 13 parametersare used to describe completelythe shape and the evolution of the synchrotronspectrum for an average outburstintheapproachingandtherecedingjets.Theremain- ing 21 parameters are used to define the start times and the specificity of each distinct event. This model is the simplest jetmodelreproducingwelltheobservations.Itassumesacon- stantDopplerfactoralongthejetandalineardecreaseB∝R−1 Fig.2. Evolution of the synchrotron emission of an average of the magneticfield B with the jet half-width R, as expected model outburst in GRS1915+105 on 15 May 1997. The ob- if B is perpendicular to the jet axis (Begelmanetal. 1984). servedevolutionisdifferentfortheapproachingjet(a,c) and Themodelparametersareconstrainedbyasimultaneousleast- therecedingjet(b,d).Thegreylinesaresynchrotronspectraat squarefittothe795radioandinfraredmeasurementsofFig.1. timesspacedby0.2dexina,b,andequalfluxdensitycontours This is achievedby manyiterative fits of small subsets of the spacedby0.3dexin c,d. Thethick blackline isthe pathfol- 34parameters.TheoverallfitisshowninFig.1.Althoughthe lowedbytheturnoverofthespectrum.Thetrianglesshowthe adjustmentisnotperfect(reducedχ2 of6.4),theshapeofthe positionofthetwostagetransitionsforeachoutburstascom- lightcurvesisverywellreproducedbythemodel. paredto their averageposition (circles).The frequencyof the fourlightcurvesinFig.1areindicatedbyverticallines. 4. ResultsandDiscussion TheoverallevolutionofanaverageoutburstinGRS1915+105 eachoutburstasbeingthesumoftwinoutbursts,onearisingin as derivedfromthe observationsof15 May1997isshownin the approachingjet and the other in the receding jet. The ob- Fig.2a,cfortheapproachingjetandinFig.2b,dforthereced- servedemissionfromthetwooppositejetsishoweverdifferent ingjet.Theoutburstisassumedtobeintrinsicallythesamein duetoorientationandrelativisticeffects.Wemodelthisbytwo bothjets,buttheobservedevolutionisdifferentbecauseofori- parameters,onebeingtheratiobetweentheDopplerfactorsof entation effects. The differentviewing angle changesthe nor- the emitting materialin the two jets and the second beingthe malization, as well as the slopes of the three-stage evolution. observeddelaybetweentheonsetofthetwinoutbursts.Inaddi- Thefirsteffectisduetoa differentrelativistic Dopplerfactor, tion,theangleof66◦betweenthejetaxisandthelineofsight while the second is due to the assumption that the approach- (Fenderetal.1999)issuchthattheshockislikelytobeviewed ingshockwaveisviewedsideways,whiletherecedingoneis sideways for the approaching jet and from behind for the re- viewedfrombehind. cedingjet(Marscheretal.1992).Thiswastakenintoaccount Themodelparametersdescribingthejetpropertiessuggest inthemodellingandresultsinadifferentobservedevolutionof thatthejetwhenobservedwasratherdissipativeandthiscould thetwojets(seeFig.2). explainwhyitdidnotpropagateveryfar(Dhawanetal.2000). Todefinethespecificityofeachoutburst,weallowtovary Afirstindicationforthisisthenon-linearincreaseoftheradius fromoneeventtotheotheronlytwooutofthethreeparameters R ∝ Lr of the jet opening with distance L along the jet. The weusedfor3C273(Tu¨rleretal.2000).Thesetwoparameters bestfitvalueofr = 1.52accountsfortherapidchangeofthe are the normalization K of the electron energy distribution spectral turnover frequency with time (see Fig. 2c,d). It sug- on (N(E) = KE−s)andthemagneticfieldstrength B attheon- geststhattheinnerjetofGRS1915+105ismorelikeatrumpet on set ofthe shock.The bulkDopplerfactorD of the emitting than a cone. This shape could result from a pressure gradient on materialisassumedheretoremainconstant.Anothersimplifi- of the material surroundingthe jet or from divergingexternal cationisthattheredoesnotseemtobeaconstantradioemis- magnetic field lines channeling the jet plasma. Alternatively, sioncomponentinGRS1915+105similartothehotspotatthe itmightbethesignatureofadeceleratingjetflow.Totestthis farendof3C273’sjet.Furthermore,thestartoftheradiolight hypothesis,werelaxtheconstraintofaconstantDopplerfactor curvesofGRS1915+105canbesimplymodelledbythefinal alongthejet.Thisresultsinamodelwithaslighttendencyto- decayofanoutburstwithaverageproperties. wardsdeceleration,buttheimprovementofthefitisnotsignif- 4 M.Tu¨rleretal.:QuasarjetemissionmodelappliedtothemicroquasarGRS1915+105 icantduetothelackoffurtherinfraredorsubmillimeterobser- tionssuchthattheiremissionisshiftedbyordersofmagnitude vations.Therearehoweverotherindicationssuggestingadis- towards lower frequencies, longer time scales and enhanced sipative jet flow. In particular the fact that the obtained value fluxes. of s = 2.02 for the index of the electron energy distribution N(E) = KE−s is close to 2. This meansthat there is roughly 5. Conclusion asmuchtotalenergycarriedbyhigh-energyelectronsthanby low-energyelectrons.For s < 2,thestrongradiativelossesof This work shows thatthe microquasarGRS1915+105has, at thedominanthigh-energyelectronswouldleadtoasubstantial leastduringsomeepochs,avariabilitybehavioursimilartothe pressuredecreasealongthejetandpreventtheshocktopropa- quasar3C273,whichcanbemodelledbyshockwavespropa- gatefar(Marscher&Gear1985).Thatsuchradiativelossesare gatinginarelativisticjet.Thisanalogysuggeststhatthephys- notnegligibleisalsosuggestedbytheslightlysteeperdecrease ical nature of relativistic jets and their emission is notdepen- (k=3.10)ofthenormalizationK ∝R−k oftheelectronenergy dentonthemassoftheblackholeattheoriginoftheejection. distribution than expected if the jet flow was really adiabatic Thestudyofjetsinbothquasarsandmicroquasarsistherefore (k=2(s+2)/3=2.68). complementary. While quasars are bright and their jet struc- FromtheratiooftherelativisticDopplerfactorsinthe re- ture is relatively well resolved, microquasarshave the advan- ceding and the approachingjet, we can derive the bulk speed tage of shortervariabilitytime scales and of a less relativistic oftheemittingregion.Weobtainaratioof0.61,whichcorre- flowallowingustoobservealsotheircounter-jetemission.The sponds,byassuminganangleof66◦ betweenthejetaxisand ability shownhere to constrain jet emission modelsby multi- thelineofsight(Fenderetal.1999),toaspeedof0.60c,cbe- wavelength observationsopens new perspectivesfor studying ing the speed of light. This mildly relativistic value contrasts relativisticjetsinquasars,microquasarsandtentativelyevenin withthespeedsexceeding0.9cderivedforthegianteruptions gamma-raybursts. (Fenderetal. 1999; Rodr´ıguez&Mirabel 1999), but is com- patiblewiththehypothesisofashockviewedsidewaysinthe Acknowledgements. WethankV.Dhawanforkindlyprovidingusethe approaching jet provided that the jet opening half-angle is of VLBAdata.Y.F.acknowledgesfinancialsupportfromtheCNES. 13◦ at least (Marscheretal. 1992). We can also estimate the distance from the black hole at which the shock wave forms References basedonthetimeintervalbetweentheonsetoftheoutburstin the two jets. This interval is found to be ∼ 400s and corre- Atoyan,A.M.&Aharonian,F.A.1999,MNRAS,302,253 sponds to a distance from the black hole measured along the Begelman, M. C., Blandford, R. D., & Rees, M. J. 1984, jetof1.471013cm,byassumingthesameorientationasabove. ReviewsofModernPhysics,56,255 Thisisroughly1AUandisonlyabouttwicetheseparationof Belloni,T.,Mendez,M.,King,A.R.,vanderKlis,M.,&van thebinarysystem(Greineretal.2001). Paradijs,J.1997a,ApJ,488,L109 Concerningthespecificityofindividualevents,represented Belloni,T.,Mendez,M.,King,A.R.,vanderKlis,M.,&van bythepointsinFig.2,wenotethattheydomostlydifferinin- Paradijs,J.1997b,ApJ,479,L145 tensityfromtheaverageoutburst.Accordingtothemodel,this Chapuis,C.&Corbel,S.2004,A&A,inpress isdueto changesofthenormalization K of theelectronen- Collins,R.S.,Kaiser,C.R.,&Cox,S.J.2003,MNRAS,338, on ergydistributionattheonsetoftheshock.Theeffectofsignifi- 331 cantchangesofthemagneticfieldstrengthB fromoneevent Dhawan,V.,Mirabel,I.F.,&Rodr´ıguez,L.F.2000,ApJ,543, on to the other would lead to a clear scatter of the points along 373 thefrequencyaxis,whichisnotobserved(seeFig.2a,b).The Eikenberry, S. S., Matthews, K., Morgan, E. H., Remillard, fact that the specificity of individual outbursts is mainly due R.A.,&Nelson,R.W.1998,ApJ,494,L61 to differencesin the normalization K of the electron energy Fender, R. P., Garrington, S. T., McKay, D. J., et al. 1999, on distributionistobeexpectediftheoutburstsaredueto anin- MNRAS,304,865 creasedinjectionrateatthebaseofthejet.Thisfindingthere- Greiner,J.,Cuby,J.G.,&McCaughrean,M.J.2001,Nature, foresupportsthe idea thatthe shockwaves formingin the jet 414,522 ofGRS1915+105aretheresultofinstabilitiesintheinnerac- Kaiser, C. R., Sunyaev,R., & Spruit, H. C. 2000,A&A, 356, cretiondisc. 975 It is difficult to assess whether a scaled-up version of the Klein-Wolt, M., Fender, R. P., Pooley, G. G., et al. 2002, shockmodelpresentedherecouldapplytothegianteruptions MNRAS,331,745 of GRS1915+105. Their radio light curve with its very fast Marscher,A.P.&Gear,W.K.1985,ApJ,298,114 rise compared to its slow decay (Dhawanetal. 2000) resem- Marscher,A.P.,Gear,W.K.,&Travis,J.P.1992,inVariability blestheinfraredmodellightcurvefortheapproachingjet,but ofBlazars,85–101 expandedabout1000timesindurationand100timesinampli- Marscher,A.P.,Jorstad,S.G.,Go´mez,J.,etal.2002,Nature, tude.Theopticallythinsynchrotronspectrumobservedinthe 417,625 radioduringthedecayofmajoreruptionshasalsoroughlythe Mirabel, I. F., Dhawan, V., Chaty, S., et al. 1998, A&A, 330, sameslopethantheinfraredspectrumdeducedhere.Thisanal- L9 ogy suggests that giant eruptions could be qualitatively sim- Mirabel,I.F.&Rodriguez,L.F.1994,Nature,371,46 ilar events than those studied here, but with physical condi- Mirabel,I.F.&Rodriguez,L.F.1998,Nature,392,673 M.Tu¨rleretal.:QuasarjetemissionmodelappliedtothemicroquasarGRS1915+105 5 Rodr´ıguez,L.F.&Mirabel,I.F.1999,ApJ,511,398 Tu¨rler,M.,Courvoisier,T.J.-L.,&Paltani,S.2000,A&A,361, 850 vanderLaan,H.1966,Nature,211,1131