ebook img

Quarkonium production at ATLAS PDF

0.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quarkonium production at ATLAS

Quarkonium production at ATLAS DarrenD.Pricea(onbehalfoftheATLAScollaboration) DepartmentofPhysics,IndianaUniversity,Bloomington,IN47405,USA. Abstract. TheproductionofquarkoniumisanimportanttestinggroundforQCDcalculations.TheJ/ψandΥ productioncross-sectionsaremeasuredinproton-protoncollisionsatacentre-of-massenergyof7TeVwiththe 2 ATLASdetectorattheLHC.Differentialcross-sectionsarepresentedasafunctionoftransversemomentumand 1 rapidity.ThefractionofJ/ψproducedinB-hadrondecaysisalsomeasuredandthedifferentialcross-sectionsof 0 2 promptandnon-prompt J/ψproductiondeterminedseparately.Measurementsofthefiducialproductioncross- sectionoftheΥ(1S)andobservationoftheχc,bJ statesarealsodiscussed. n a J 1 Introduction Production of J/ψ can occur promptly from the hard 4 interaction,ormaybeproducednon-promptlyviadecayof 2 Quarkonia are formed from a quark pair of same flavour aB-hadron.J/ψfromb-decayshavepositivedisplaceddi- ] andshouldrepresentoneofthesimplestsystemsdescribed muonverticesandcanbedistinguishedfrompromptpro- x by QCD theory. Heavy quarkonium is a multiscale sys- duction(andnon-J/ψbackgrounds)viathepseudo-proper e p- tpeemrt,urabllaotwivienganfdornoring-orpoeurtsutrebsattsivoefQthCeDinatenrdplaayricbhetswpeeecn- ttirmanesvdeisrsceridmeicnaayntleτng=thLoxfyt·hmePJJ/D/ψψGv/eprTJt/eψx,.where Lxy isthe e trumofradialandorbitalexcitationsallowstudiesofspec- A simultaneous unbinned maximum likelihood fit to h [ troscopyanddecaydynamics[1].Inaddition,quarkoniais invariantmassandlifetimeallowsustodistinguishprompt an ideal probe of cold and hot nuclear matter effects[2]. andnon-promptJ/ψproductionfromcombinatorialback- 1 Many open questionsexist in this area, and it has proven ground(seeFigure1foranexampleofsuchafitprojected v difficultthusfartouniversallydescribethekinematicsand ontothelifetimedistribution)anddeterminethefractionof 2 production properties of quarkonia. ATLAS plans to in- J/ψproducedviaB-decaysasafunctionofp andrapidity 5 T vestigatequarkoniumproductionthroughmeasurementsof (resultsforonerapiditysliceareshowninFigure2). 9 production,spin-alignmentandassociatedhadronicactiv- 4 ity of these various states. The first production measure- . 1 mentstowardthisgoalareoutlinedbelow. 0 2 102 ATLAS 1 s ) ∫ s = 7 TeV DToattaal PDF iv: p2rIondculucstiioven,cprroosms-psteacntidonnomne-parsoumrepmteJn/ψts 15 p L dt = 2.3 pb-1 BSSaiiggcnnkaagllr NPouroonnmd-P pCrto oCmmoppmto pCnoeonnmetpnotnent X . 10 0 r Cross-section measurements presented here make use of ( a / datacollectedviaasinglemuontrigger,firstwithnothresh- s t oldon p thenlaterwithathresholdat4GeVasinstanta- n 1 T e nousluminosityincreased.Triggerand reconstructionef- v E ficiencies are measured in data and validatedwith Monte Carlo simulations. Weights incorporating acceptance and 10-1 efficiencycorrectionsare appliedto quarkoniacandidates -4 -2 0 2 4 6 8 10 onanevent-by-eventbasisbeforefitsareusedtoextracta pseudo−proper time [ps] cross-section. The acceptance corrections represent the probability Fig. 1. Pseudo-proper time distribution of J/ψ µ+µ candi- − for quarkonium with given kinematics to pass basic se- → datesinthesignalmassregion,for9.5 < p (J/ψ) < 10.0GeV T lectioncuts.Theexactvalueofthisprobabilityinagiven and yJ/ψ < 0.75.Thepointsrepresentmeasureddata,thesolid phase space is dependent on nature of the as yet unmea- linei|sthe| resultofanunbinnedmaximumlikelihoodfittoalldi- suredspin alignmentof quarkonium.Fivespin-alignment muonpairsinthe2.5 3.5GeVmassregionprojectedontothe scenarioshavebeenidentifiedthatinducethelargestenve- pseudo-properlifetime−distribution. lope of variationon visible cross-sections.Measurements arerepeatedunderapplicationofdifferentacceptancemaps reflectingdifferentpolarisationstatesasasystematiceffect Thedataanalysedallowforstudyofthe B-production onmeasuredproductionobservables. fraction across a pT range of 6 to 70 GeV, to far higher transversemomentathanhavepreviouslybeenstudied.A a e-mail:[email protected] strong dependence of the fraction is observed as a func- EPJWebofConferences on fraction 00..891 ACCTMDLFSA Ss s ==s17=. 9T76e T VTe,eVV,|,yJ|/y|ψyJ|/J<ψ/ψ1|<|.<200.7.65 y [nb/GeV] 101 NonFSA-pOpTriLoNnAm-LaSLpli tgB |ycn→Jrm/oψ se|J<sn/0ψ-ts .Xe7en5cvtieolnope cti 0.7 Spin-alignment envelope dT u p ψ prodpt J/ 000...456 A∫TLL dAt S~ 2.3 pb-1 non-promptσ/d1100--21 m 0.3 2d10-3 Non-pro 00..21 µµ→ψ+-)10-4 ∫AsLT= Ld 7At =ST e2V.2 pb-1 0 1 10 pJ/ψ [GeV] Br(J/10-5 10 pJ/ψ [GeV] T T Fig.2. Productionfractionof non-prompt toinclusive J/ψasa V] function of J/ψ transverse momentum. Overlaid is a band rep- Ge 10 Prompt cross-section resentingthemaximalvariationoftheresultundervariousspin- nb/ ATLAS |yJ/ψ|<0.75 aClMignSmreesnutltssc.enarios. Comparison is made to existing CDF and dy [ 1 SCpoilno-uarl iEgnvampeonrta etionnve Mloopdeel pt/dpT10-1 NNLNOLO C*o Clooulor uSri nSginlegtlet tion of pT, but slow dependence on rapidity in the range promσ 10-2 (0 < y < 2.4)ofrapiditiesstudied.Goodagreementwith 2d10-3 CDF|d|ata (pp collisions at √s = 1.96 TeV) is observed µ-) + within the experimental uncertainties, suggesting the B- µ→ 10-4 ATLAS s= 7 TeV fractionhaslimiteddependenceoncentre-of-massenergy ψJ/10-5 ∫L dt = 2.2 pb-1 andinitialcollidingparticles,particularlyatlarge pT. Br( Applyingcandidate-by-candidateefficiencyandaccep- 0 10 20 30 40 50 60 70 tanceweightstodi-muonpairsin p ybins,extractsig- pJ/ψ [GeV] T − T nal yield from unbinned maximum likelihood fit to J/ψ peak. Figure 3 shows an example of an inclusive differ- Fig. 4. Non-prompt (top) and prompt (bottom) J/ψ production entialcross-sectionextractedforonerapiditybin(fourin cross-sectionsasafunctionof J/ψtransversemomentum,com- total),asafunctionofJ/ψ pT. pared to theoretical predictions (FONLL, in the case of non- prompt production; NLO and NNLO* and Colour Evaporation Modelpredictionsforpromptproduction).Overlaidisabandrep- resentingthevariationoftheresultundervariousspin-alignment V]102 e Inclusive cross-section assumptions on the non-prompt and prompt components. The b/G 10 CATMLSA S ||yyJ/ψ||<<01..725 central value assumes anisotropic polarisation for both prompt y [n Spin-alignmJe/ψnt envelope andnon-promptproduction. d 1 T p d anciesinshapeandnormalisation,highlightingtheuncer- σ/10-1 tainties that exist in explaining the nature of prompt J/ψ 2 d ) production. µ+- 10-2 µ ATLAS → s= 7 TeV ψJ/10-3 ∫L dt = 2.2 pb-1 3 Prompt Υ(1S) fiducialproduction ( Br cross-sectionmeasurement 7 8 910 20 30 40 50 pJ/ψ [GeV] T Measurement of the Υ(1S) cross-section has been con- ducted in a similar manner as with J/ψ, also using sin- Fig. 3. Inclusive J/ψ production cross-section as a function of glemuontriggers.Incontrasttothe J/ψresults,thismea- J/ψtransversemomentuminthe y <0.75rapiditybin. | | surement is presented in a fiducial region: pµ > 4 GeV, T ηµ < 2.5toremovetheuncertaintyduetospinalignment | | Bycombiningtheinformationfromtheinclusivecross- inthecross-sectionmeasurement. section and B-fraction measurements, one can extract a Unfolded differential cross-sections are compared to non-prompt (J/ψ from b-decays) and prompt J/ψ cross- NLO pQCD and significant disagreement is noted. This sectionversus p andrapidity.MeasurementsofJ/ψfrom behaviourisconsistentwithothertheoreticalpredictions[7] T b-decaysisfoundtoagreewellwithFixed-OrderNext-to- at NLO when comparedto prompt J/ψ and Υ data at the Leading-Logtheoreticalpredictions.Comparisonstocolour Tevatron and LHC, highlighting the need for additional singletNNLO*pQCDpredictionsandthephenomenolog- higherordercontributionstoaccountfortheobservedpro- ical Colour Evaporation Model show significant discrep- duction. 2011HadronColliderPhysicssymposium(HCP-2011) maticsthroughthismethod,butisbalancedbyalowprob- V] Data 2010 ability for a conversion to occur and successfully be re- e ATLAS constructed.Measurementvia calorimetrictechniques(as b/G 102 NRQCD, Pythia8 showninFigure6)benefitfromincreasedsignalefficiency p atacostofreducedresolution.Recently,similartechniques µ+-) [ (CdiSreMct oNnlLy)O (hvaivaeΥbe(nenS)us+edγbdyeAcTayLsA)SintobroetchocnasltoruricmttehteryχbaJn(dmtPra)csktaitnegs µ 10 modes and has led to the discovery[9] of a new set of → states,theχ (3P). ) bJ S 1 ( ϒ 1 ( BR |yϒ(1S)|<1.2 eVeV ATLAS Preliminary ×σ2 dy /dpdT10-10 |ηsµ=|7< T25e.V5,,∫ pLµTd>t=411 .01G3 epVb-1 15 20 25 30 Entries / 10 MEntries / 10 M343400000000 χχDFBcciaat12 ctRake g2sr0ou1ult0nd ∫2pst. (9L χ=0 cd J7<t) ≈T>M e 31(V9µ0 + pGµb-e)-1 V<, 3|y.2(χ5c JG)|e <V 2.4 pϒ(1S) [GeV] 220000 N(χc)= 2960 ± 120 T α=0.962 ± 0.062 δ=2.7 ± 1.9 MeV V] Data 2010 110000 e ATLAS b/G 102 NRQCD, Pythia8 00 p 220000 440000 660000 880000 11000000 µ-) [ (CdiSreMct oNnlLy)O 4400 32..4555 << MM((µµ++µµ--)) << 42..08 GOeRV + µ 10 → 2200 ) S 1 00 220000 440000 660000 880000 11000000 ϒ( 1 MM((µµµµγγ))--MM((µµµµ)) [[MMeeVV]] ( BR 1.2<|yϒ(1S)|<2.4 Fig.6.Theresultsofasimultaneousfittothesignalregion(top) × dy |ηµ|<2.5, pµT>4 GeV aonfdχbc1acakngdroχucn2dm(eJ/soψnssidreebcaonndst)rurecgteiodn((vbioattcoamlo)r,ismheotwryinmgesaigsnuarels- dpT10-1 s=7 TeV,∫ Ldt=1.13 pb-1 tmioennto)fththreouingvhatrhiaenirtrmadaisastidvieffdereecnacyesbtoetJw/eψe+nγth,eviµeµwγeadnadsµaµfusnycs-- σ/ 2 0 5 10 15 20 25 30 tems. d pϒ(1S) [GeV] T Fig. 5. Differential prompt Υ(1S) µ+µ production cross- → − References sectionfor yΥ(1S) < 1.2(top)and1.2 < yΥ(1S) < 2.4(bottom) as function|of pΥ|(1S) for pµ > 4 GeV, η|µ < 2|.5. Comparison ismadetocolourT-singletNLTOdirectpro|duc|tionpredictions,and 1. N. Brambilla et al.[QuarkoniumWorkingGroupCol- the shaded area shows the change in the theoretical prediction laboration], hep-ph/0412158; N. Brambilla et al., Eur. when varying the renormalisation and factorisation scales by a Phys.J.C71(2011)1534[arXiv:1010.5827[hep-ph]]. factor of two. A comparison is also made to a model based on 2. The ATLAS Collaboration, Phys. Lett. B 697 (2011) NRQCDnativetoPythia8,foraparticularchoiceofparameters. 294[arXiv:1012.5419[hep-ex]]. 3. The ATLAS Collaboration, Nucl. Phys. B 850 (2011) 387[arXiv:1104.3038[hep-ex]]. 4 Reconstructionof χcJ mesons through 4. D.Acostaetal.[CDFCollaboration],Phys.Rev.D71 radiative decays (2005)032001[hep-ex/0412071]. 5. V.Khachatryanetal.[CMSCollaboration],Eur.Phys. The χ and χ mesons in radiative decays to a J/ψ and J.C71(2011)1575[arXiv:1011.4193[hep-ex]]. c1 c2 a photon have been observed via calorimetry. Measuring 6. TheATLASCollaboration,Phys.Lett.B705,9(2011) theproductioncross-sectionsoftheχ arecrucialforpre- [arXiv:1106.5325[hep-ex]]. cJ ciseunderstandingof J/ψproductionandactsasatestof 7. J. P. Lansberg, Eur. Phys. J. C 61 (2009) 693 pQCDinitsownright. [arXiv:0811.4005[hep-ph]]. PhotonsatATLAScanalsobeidentifiedandmeasured 8. The ATLAS Collaboration, ATLAS-CONF-2011-136 throughreconstructionofthetracksfromelectron-position (https://cdsweb.cern.ch/record/1383839). 9. TheATLASCollaboration,arXiv:1112.5154[hep-ex]. pairsassociatedwithaphotonconversionoccurringinthe InnerDetector.ThetrackingcapabilitiesofATLASallow for much more precise measurement of the photon kine-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.