Quark Orbital Angular Momentum Matthias Burkardt NMSU May 29, 2015 Outline 2 3D imaging of the nucleon (cid:44)→ Single-Spin Asymmetries (SSAs) quark-gluon correlations → color force angular momentum decompositions (Jaffe v. Ji) (cid:44)→ change in OAM due to FSI Summary Deeply Virtual Compton Scattering (DVCS) 3 Compton scattering form factor electron hits nucleon, nucleon electron hits nucleon & remains intact & photon gets nucleon remains intact emitted study amplitude that nucleon study both energy & q2 remains intact as function of dependence momentum transfer →F(q2) (cid:44)→ additional information about F(q2)=(cid:82) dxGPD(x,q2) momentum fraction x of active quark (cid:44)→ GPDs provide momentum disected form factors (cid:44)→ generalized parton distributions GPD(x,q2) Physics of GPDs: 3D Imaging of the Nucleon 4 MB, PRD62, 071503 (2000) FT form factors:←→ρ((cid:126)r) GPDs(x,0,−∆2): form factor for quarks with momentum fractionx ⊥ (cid:44)→ suitable FT of GPDs should provide spatial distribution of quarks with momentum fraction x Impact Parameter Dependent Quark Distributions (cid:90) d2∆ q(x,b⊥)= (2π)⊥2GPD(x,0,−∆2⊥)e−ib⊥·∆⊥ q(x,b )= parton distribution as a function of the separation b from ⊥ ⊥ (cid:80) the transverse center of momentum R ≡ r x ⊥ i∈q,g ⊥,i i probabilistic interpretation! no relativistic corrections: Galilean subgroup! (MB,2000) (cid:44)→ corollary: interpretation of 2d-FT of F (Q2) as charge density in 1 transverse plane also free from relativistic corrections (MB,2003;G.A.Miller, 2007) Impact parameter dependent quark distributions 5 unpolarized proton q(x,b⊥)=(cid:82) d(22π∆)⊥2H(x,0,−∆2⊥)e−ib⊥·∆⊥ F (−∆2)=(cid:82) dxH(x,0,−∆2) 1 ⊥ ⊥ x= momentum fraction of the quark b relative to ⊥ center of momentum ⊥ small x: large ’meson cloud’ larger x: compact ’valence core’ x→1: active quark becomes center of momentum (cid:44)→ (cid:126)b →0 (narrow distribution) for x→1 ⊥ Impact parameter dependent quark distributions 6 proton polarized in +xˆ direction no axial symmetry! (cid:90) d2∆ q(x,b⊥)= (2π)⊥2Hq(x,0,−∆2⊥)e−ib⊥·∆⊥ 1 ∂ (cid:90) d2∆ −2M ∂b (2π)⊥2Eq(x,0,−∆2⊥)e−ib⊥·∆⊥ y Physics: relevant density in DIS is j+ ≡j0+j3 and left-right asymmetry from j3 intuitive explanation moving Dirac particle with anomalous magnetic moment has electric dipole moment ⊥ to p(cid:126) and ⊥ magnetic moment (cid:44)→ γ∗ ’sees’ flavor dipole moment of oncoming nucleon Impact parameter dependent quark distributions 6 proton polarized in +xˆ direction no axial symmetry! (cid:90) d2∆ q(x,b⊥)= (2π)⊥2Hq(x,0,−∆2⊥)e−ib⊥·∆⊥ 1 ∂ (cid:90) d2∆ −2M ∂b (2π)⊥2Eq(x,0,−∆2⊥)e−ib⊥·∆⊥ y Physics: relevant density in DIS is j+ ≡j0+j3 and left-right asymmetry from j3 Impact parameter dependent quark distributions 7 proton polarized in +xˆ direction (cid:90) d2∆ q(x,b⊥)= (2π)⊥2Hq(x,0,−∆2⊥)e−ib⊥·∆⊥ 1 ∂ (cid:90) d2∆ −2M ∂b (2π)⊥2Eq(x,0,−∆2⊥)e−ib⊥·∆⊥ y sign & magnitude of the average shift model-independently related to p/n anomalous magnetic moments: (cid:104)bq(cid:105) ≡(cid:82)dx(cid:82)d2b q(x,b )b y ⊥ ⊥ y = 1 (cid:82) dxE (x,0,0)= κq 2M q 2M Impact parameter dependent quark distributions 7 sign & magnitude of the average shift model-independently related to p/n anomalous magnetic moments: (cid:104)bq(cid:105) ≡(cid:82)dx(cid:82)d2b q(x,b )b y ⊥ ⊥ y = 1 (cid:82) dxE (x,0,0)= κq 2M q 2M κp =1.913= 2κp − 1κp+... 3 u 3 d u-quarks: κp =2κ +κ =1.673 u p n (cid:44)→ shift in +yˆdirection d-quarks: κp =2κ +κ =−2.033 u n p (cid:44)→ shift in −yˆdirection (cid:104)bq(cid:105)=O(±0.2fm) !!!! y GPD ←→ Single Spin Asymmetries (SSA) 8 example: γp→πX u,d distributions in ⊥ polarized proton have left-right asymmetry in ⊥ position space (T-even!); sign “determined” by κ & κ u d attractive final state interaction (FSI) deflects active quark towards the center of momentum (cid:44)→ FSI translates position space distortion (before the quark is knocked out) in +yˆ-direction into momentum asymmetry that favors −yˆdirection→ chromodynamic lensing ⇒ κ ,κ ←→ sign of SSA!!!!!!!! (MB,2004) p n confirmed by Hermes & Compass data
Description: