KEKPreprint2016-59 CHIBA-EP-221 Quark confinement to be caused by Abelian or non-Abelian dual superconductivity in the SU(3) Yang-Mills theory 7 1 0 Akihiro Shibata 2 ∗ ComputingResearchCenter,HighEnergyAcceleratorResearchOrganization(KEK) n a E-mail: [email protected] J Kei-IchiKondo 3 1 DepartmentofPhysics,GraduateSchoolofScience,ChibaUniversity,Chiba263-8522,Japan E-mail: [email protected] ] t a SeikouKato l - OyamaNationalCollegeofTechnology,Oyama,Tochigi323-0806,Japan p E-mail:[email protected] e h ToruShinohara [ DepartmentofPhysics,GraduateSchoolofScience,ChibaUniversity,Chiba263-8522,Japan 2 E-mail:[email protected] v 2 Thedualsuperconductivityisapromisingmechanismforquarkconfinement.Wehavepresented 4 4 a newformulationoftheYang-Millstheoryonthe lattice thatenablesusto changetheoriginal 2 non-Abeliangaugefield into the new field variables such that one of them called the restricted 0 field gives the dominant contribution to quark confinementin the gauge independentway. We . 1 have pointed out that the SU(3) Yang-Mills theory has another reformulation using new field 0 variables(minimaloption),inadditiontothewayadoptedbyCho,FaddeevandNiemi(maximal 7 1 option). Inthepastlatticeconferences,wehaveshownthenumericalevidencesthatsupportthe : v non-Abeliandual superconductivityusing the minimaloption for the SU(3) Yang-Millstheory. i This result should be compared with Abelian dual superconductivity obtained in the maximal X optionwhichisagaugeinvariantextensionoftheconventionalAbelianprojectionmethodinthe r a maximalAbeliangauge. Inthistalk, wefocusondiscriminatingbetweentwo reformulations,i.e.,maximalandminimal optionsoftheSU(3)Yang-Millstheoryfromtheviewpointofdualsuperconductivityforquark confinement. We investigatetheconfinement/deconfinementphasetransitionsatfinitetempera- tureinbothoptions,whicharecomparedwiththeoriginalYang-Millstheory. Forthispurpose, we measure the distribution of Polyakov-loopsand the Polyakov-loop average, the correlation functionofthePolyakovloopsandthedistributionofthechromoelectricfluxconnectingaquark andantiquarkinbothconfinementanddeconfinementphases. 34thannualInternationalSymposiumonLatticeFieldTheory 24-30July2016 UniversityofSouthampton,UK Speaker. ∗ (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ QuarkconfinementtobecausedbyAbelianornon-Abeliandualsuperconductivity AkihiroShibata 1. Introduction The dual superconductivity is a promising mechanism for quark confinement [1]. In order to establish this picture, we have presented a new formulation of the Yang-Mills theory on the lat- tice that enables us to decompose the original Yang-Mills (YM) gauge link valiableUx,m into the gauge link variable Vx,m corresponding to its maximal stability subgroup of the gauge group and the remainder Xx,m , Ux,m =Xx,m Vx,m , where the restricted field Vx,m could be the dominant mode for quark confinement. (For a review see [2]). For the SU(3) YM theory, wehave two options of thedecomposition: theminimalandmaximaloptions. Intheminimaloption, especially, themaxi- malstability groupisnon-AbelianU(2)andtherestricted fieldcontains thenon-Abelian magnetic monopole. In the preceding works, we have shown numerical evidences of the non-Abelian dual superconductivity using the minimal option for the SU(3) YM theory on a lattice: the restricted field and the extracted non-Abelian magnetic monopole dominantly reproduces the string tension inthelinearpotentialoftheSU(3)YMtheory[5],andtheSU(3)YMvacuumisthetypeIdualsu- perconductor detectedbythechromoelectric fluxtubeandthemagneticmonopolecurrentinduced aroundit,whichisanovelfeatureobtainedbyoursimulations[6]. Wehavefurtherinvestigatedthe confinement/deconfinement phase transition in view of this non-Abelian dual superconductivity picture[7][8][9][10]. Theseresults should becompared withthemaximaloption whichisadopted first by Cho, Faddeev, and Niemi [12]. The maximal stablity group is AbelianU(1) U(1) and × the restricted fieldinvolves only theAbelian magnetic monopole [13][14]. Thisisnothing but the gaugeinvariant extension oftheAbelianprojection inthemaximalAbeliangauge[15][16]. In this talk, we focus on discriminating between two reformulations, i.e., maximal and min- imal options of the SU(3) YM theory from the viewpoint of dual superconductivity for quark confinement. For this purpose, we measure string tension for the restricted non-Abelian field of both minimalandmaximaloption incomparison withthestring tension fortheoriginal YMfield. We also investigate the dual Meissner effect by measuring the distribution of the chromoelectric flux connecting a quark and an antiquark and the induced magnetic-monopole current around the fluxtube. 2. Gaugelinkdecompositions LetUx,m =Xx,m Vx,m beadecomposition oftheYMlinkvariableUx,m ,wheretheYMfieldand the decomposed new variables are transformed by full SU(3) gauge transformation W such that x Vx,m istransformed asagaugelinkvariableandXx,m asasitevariable [11]: Ux,m −→Ux′,m =W xUx,m W †x+m , (2.1a) Vx,m −→Vx′,m =W xVx,m W †x+m , Xx,m −→Xx′,n =W xXx,m W †x. (2.1b) For the SU(3) YM theory, we have two options discriminated by its stability group, so called the minimalandmaximaloptions. 2.1 Minimaloption TheminimaloptionisobtainedforthestabilitysubgaugegroupH˜ =U(2)=SU(2) U(1) × ⊂ SU(3). By introducing the color field h = x (l 8/2)x † SU(3)/U(2) with l 8 being the last x ∈ 1 QuarkconfinementtobecausedbyAbelianornon-Abeliandualsuperconductivity AkihiroShibata diagonal Gell-Mann matrix and x an SU(3) group element, the decomposition is given by the definingequation: 1 e Dm [V]hx:= e Vx,m hx+m −hxVx,m =0, (2.2a) g :=ei2p q/3ex(cid:2)p( ia0h i(cid:229) 3 (cid:3)a(j)u(j)). (2.2b) x − x x− j=1 x x (j) Here, the variable g is an undetermined parameter from Eq.(2.2a), u ’s are su(2)-Lie algebra x x valued,and qhasanintegervalue. Thesedefiningequationscanbesolvedexactly,andthesolution isgivenby Xx,m =L†x,m det(Lx,m )1/3g−x1, Vx,m =Xx†,m Ux,m , (2.3a) Lx,m :=bLx,m L†x,bm −1/2Lx,m , (2.3b) 5 2 bLx,m :=(cid:0)31+√3(cid:1)(hx+Ux,m hx+m Ux†,m )+8hxUx,m hx+m Ux†,m . (2.3c) Note that the above defining equations correspond to the continuum version: Dm [V ]h(x)=0 and tr(h(x)Xm (x)) =0, respectively. Inthe naive continuum limit, wehave reproduced the decompo- sitionAm (x)=Vm (x)+Xm (x)inthecontinuum theory[3]. The decomposition is uniquely obtained as the solution (2.3) of Eqs.(2.2), if color fields h x { } are obtained. To determine the configuration of color fields, we use the reduction condition to formulate the new theory written by new variables (Xx,m ,Vx,m ) which is equipollent to the original YMtheory. Here,weusethereduction functional: Fred[hx]=(cid:229) x,m tr (Dem [Ux,m ]hx)†(Dem [Ux,m ]hx) , (2.4) (cid:8) (cid:9) andthencolorfields h areobtained byminimizingthefunctional (2.4). x { } 2.2 Maximaloption The maximal option is obtained for the stability subgroup of the maximal tarus group H˜ = U(1) U(1) SU(3), and the resulting decomposition is the gauge-invariant extension of the × ⊂ Abelian projection inthemaximalAbelian A˛iC´lC´‘A˛jgauge. Byintroducing the colorfieldn(3) = x (l 3/2)x †,n(8)=x (l 8/2)x † SU(3)/U(2)withl 3,l 8 beingthetwodiagonal Gell-Mann ma- ∈ tricesandx anSU(3)groupelement,thedecomposition isgivenbythedefiningequation: 1 e (j) (j) (j) Dm [V]nx := e Vx,m nx+m −nx Vx,m =0 j=3,8, (2.5a) g :=ei2p q/3exph( ia3n(3) ia(8)n(8)i). (2.5b) x x x x x − − The variable g is an undetermined parameter from Eq.(2.5a), and q has an integer value. These x definingequations canbesolvedexactly,andthesolution isgivenby Xx,m =Kx†,m det(Kx,m )1/3g−x1, Vx,m =Xx†,m Ux,m , (2.6a) Kx,m :=bKx,m Kx†,bm −1/2Kx,m , (2.6b) Kbx,m :=1(cid:0)+6(n(x3)(cid:1)Ux,m nx(3+)m Ux†,m )+6(nx(8)Ux,m nx(8+)m Ux†,m ) (2.6c) 2 QuarkconfinementtobecausedbyAbelianornon-Abeliandualsuperconductivity AkihiroShibata Yang-Mills field V field minimal option V field maximal option 0 0.0 .015 bbbbbbbbbbbbbbb===============556666666665666..99.............543322110998872005050505505055 - 0000 ....01123 bbb==bbbbbbbbbbbb=============556..66666666566699.............572433221109988055050505055050 - 0000 ....01123 bbbbbbbbbbbbbbb===============556666666665666..99.............543322110998872005050505505055 -0.05 -0.2 -0.2 -0.3 -0.3 -0.1 -0.05 0 0.05 0.1 0.15 0.2 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 Figure 1: Distribution of the space-averagedPolyakovloops: The space-averagedPolyakov loop eq(3.2) for each configurationare plotted in the complexplane. (a) original(YM) field, (b) restricted field in the minimaloption,(c)restrictedfieldinthemaximaloption. Note that the above defining equations correspond to the continuum version: Dm [V]n(j)(x) = 0 and tr(n(j)(x)Xm (x)) = 0, respectively. In the naive continuum limit, we have reproduced the decomposition Am (x)=Vm (x)+Xm (x)inthecontinuum theory.(See[3][12].) Todeterminetheconfiguration ofcolorfields,weusethereductionconditiontoformulatethe new theory written by new variables (Xx,m ,Vx,m ) which is equipollent to the original YM theory. Here,weusethereduction functional: Fred[n(x3),n(x8)]=(cid:229) x,m (cid:229) j=3,8tr (Dem [Ux,m ]n(xj))†(Dem [Ux,m ]n(xj)) , (2.7) n o (3) (8) and then color fields n ,n are obtained by minimizing the functional (2.7). It should be x x noticedthatthemaximnaloptiongoivesthegaugeinvariantextensionoftheAbelianprojectioninthe maximalAbeliangauge. 3. Lattice Data We generate the YM gauge field configurations (link variables) Ux,m using the standard { } Wilson action on the lattice with the size of L3 N = 243 6. We prepare 500 data sets at T × × b := 2N /g2 (N = 3) = 5.8,5.9,6.0,6.1,6.2,6.3 every 500 sweeps after 10000 thermalization. c c The temperature is controlled by changing the parameter b . We obtain two types of decomposed gauge link variablesUx,m =Xx,m Vx,m for each gauge link by using the formula Eqs.(2.3) and (2.6) (3) (8) givenintheprevioussection, afterthecolor-field configuration h and n ,n areobtained x x x { } bysolvingthereductionconditionasminimizingthefunctional(2.4)and(n2.7),respeoctively. Inthe measurement ofthe Wilson loop average defined below, weapply the APEsmearing technique to reducenoises. First,weinvestigatethedistribution ofasinglePolyakovloopP (x)inbothoptionsaswellas ∗ theoriginal Yang-Millstheory: (cid:213)NT (cid:213)NT (min) (cid:229) (cid:213)NT (max) P (x):=tr P U , P (x):=tr P V ,P (x):= tr P V , YM (x,t),4 min (x,t),4 max (x,t),4 t=1 ! t=1 ! x t=1 ! (3.1) Figure1represents thedistribution ofthespace-averaged PolyakovloopP (x)definedby ∗ 1 (cid:229) 1 (cid:229) 1 (cid:229) P = P (x), P = P (x), P = P (x), (3.2) YM L3 YM min L3 min max L3 max x x x 3 QuarkconfinementtobecausedbyAbelianornon-Abeliandualsuperconductivity AkihiroShibata Polyakov loop average Polyakov-loop susceptibility 0.6 0.3 Vmax Vmax Vmin Vmin 0.5original 0.25 original 0.4 0.2 PL ave 00..23 susceptibility 0 0.1.15 0.05 0.1 0 0 -0.05 5.8 5.9 6 6.1 6.2 6.3 6.4 5.8 5.9 6 6.1 6.2 6.3 6.4 beta beta Figure2: (Left)ThecombinationplotofthePolyakov-loopaveragesfortheoriginal(YM)field,minimal option maximal option from bottom to top. (Right) The combination plot of the suseceptability of the Polyakov-loopfortheoriginalfield,minimaloptionandmaximaloption. b = 5.8 b = 5.9 b = 6,0 b = 6,1 3 3 10 original (YM) 1.5 minimal 2.5 2.5 8 maximal 2 2 1 1.5 1.5 0.5 6 eV(R/) 4 0 .15 0 .15 -0 .05 2 0 0 -1 -0.5 -0.5 0 -1 -1 -1.5 -2 -1.5 -1.5 -2 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 distance (R/e ) distance (R/e ) distance (R/e ) distance (R/e ) Figure 3: A˛@The two-point correlation functions of the Polyakov loops calculated from the Yang-Mills fieldandV-fieldsintheminimalandmaximaloptionsareplotedinthesamepanelforvariousvaluesofb for each configuration in the complex plane. The value of the space-averaged Polyakov loop are different among theoptions, but allthe distributions equally refrect the expected center symmetry Z(3)ofSU(3). TheleftpanelofFigure2showsthePolyakov-loop average, P , P , P . YM min max h i h i h i ThePolyakov-loopaverageisanorderparameterofthecentersymmetrybreakingandrestoration, whichistheconventional orderparameteroftheconfinement/deconfinement phasetransition. The right panel of Fig.2 shows the susceptibility. Fig.2 shows that three Polyakov-loop average give the same critical point b =5.9. Therefore, both the minimal and maximal options reproduce the critical pointintheoriginalYang-Millsfield. Next,weinvestigatethetwo-pointcorrelationfunctionofthePolyakovloops,whichisrelated tothemixedstatic-potential ofthesingletandadjointcomposite statesinthefollowingway[18]: 1 N2 1 VU(r= x y)=log( PU(x)PU(y) ), PU(x)PU(y) e−F(S)/T + c − e−F(A)/T. (3.3) | − | h i h i≃ N N c c Figure 3 shows the combination plot eq.(3.3) for various temperature (b ). In the both options we find that the restricted field (V-field) is dominant for the Polyakov loop correlation function and reproduces thestaticpotential oftheoriginalYMtheoryinthelongdistance r= x y. | − | 4 QuarkconfinementtobecausedbyAbelianornon-Abeliandualsuperconductivity AkihiroShibata Yang-Mills Symbol b=5.8 Minimal option Symbol b=5.8 Maximal option Symbol b=5.8 00..45 EEBBBEyzxyzx 00..45 EEBBBEyzxyzx 00..45 EEBBBEyzxyzx 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0 0 0 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 Yang-Mills Symbol b=6.2 Minimal option Symbol b=6.2 Maximal option Symbol b=6.2 00..45 EEEBBBxyzxyz 00..45 EEBBBEyzxyzx 00..45 EEBBBEyzxyzx 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0 0 0 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 Figure 4: Chromo flux created by a pair of quark and anti-quark. The flux is measured at the point of distanceyfromthe1/3dividingpointofquarkandantiquarklyingonthez-axis. Upperandlowerpanels represent chromo flux in confining phase (b =5.8) and deconfining phase (b =6.2), respectively. Each panelintheleftmidleandrightrepresentsthemeasurementoftheoriginal(YM)field,theminimalandthe maximaloptions,respectively. Finally,westudythedualMeissnereffect. Forthispurpose,wemeasurethechromofluxatfi- nitetemperaturecreatedbyaquark-antiquark pairwhichisrepresentedbythemaximallyextended WilsonloopW oftheR T rectangle, i.e.,thefieldstrengthofthechromofluxatthepositionPis × measured byusingaplaquette variableU atPastheprobeoperatorforthefieldstrength [17]: p tr WLU L† 1 tr(U )tr(W) r := p h p i, (3.4) UP tr(W) −3 tr(W) (cid:10) (cid:0)h i (cid:1)(cid:11) h i where L is the Schwinger line connecting the source W and the probe U needed to obtain the p gauge-invariant result(See[8]). Tomeasurethechromofluxfortherestrictedfieldsoftheminimal and maximal options, we use the operator that the Schwinger line L and the probe U are made p of the restricted fields. Figure 4shows the preliminary measurements of the chromo fluxthe both options and the original field. We find that the chromo-flux tube appears in the confining phase (b = 5.8), while in the deconfining phase (b =6.2) the flux tube disappears, that is to say, the confinement/deconfinement phase transition isunderstood as the dual Meissner effect. Thisis the caseforbothoptionsandtheoriginalYMfield,althoughthepreciseprofilesofthechromofluxare different optionbyoption. 4. Summary By using a new formulation of YM theory, we have investigated possible two types of the dual superconductivity at finite temperature in the SU(3) YM theory, i.e., the Non-Abelian dual superconductivity astheminimaloption andthemaximaloption tobecompared withtheconven- tional Abelian dual superconductivity. Inthemeasurement forbothmaximalandminimaloptions as well as for the original YM field at finite temperature, we found the restricted V-field domi- nance for both options. The restricted fields in the both options reproduce the center symmetry 5 QuarkconfinementtobecausedbyAbelianornon-Abeliandualsuperconductivity AkihiroShibata breaking and restoration of the original Yang-Mills theory, and give the same critical temperature oftheconfining-deconfining phasetransition. Then,wehaveinvestigated thedualMeissner effect and found that the chromoelectric flux tube appears in each option in the confining phase, but it disappears inthedeconfining phase. Thusbothoptions canbeadoptedasthelow-energy effective descriptionoftheoriginalYang-Millstheoryatleastwithintheinvestigationspresentedinthistalk. Acknowledgement Thisworkissupported byGrant-in-Aid forScientificResearch (C)24540252 and15K05042 fromJapanSocietyforthePromotionScience(JSPS),andinpartbyJSPSGrant-in-AidforScien- tificResearch(S)22224003. Thenumericalcalculations aresupportedbytheLargeScaleSimula- tionProgramNo.14/15-24(2014-2015) and No.15/16-16(2015-2016)ofHighEnergyAccelerator ResearchOrganization (KEK). References [1] Y.Nambu,Phys.Rev.D10,4262(1974);G.’tHooft,inHighEnergyPhysics,editedbyA.Zichichi (EditoriceCompositori,Bologna,1975);S.Mandelstam,Phys.Report23,245(1976);A.M.Polyakov, Nucl.Phys.B120,429(1977). [2] Kei-IchiKondo,SeikouKato,AkihiroShibataandToruShinohara,Phys.Rept.579(2015)1-226, arXiv:1409.1599[hep-th] [3] K.-I.Kondo,T.MurakamiandT.Shinohara,Eur.Phys.J.C42,475(2005);K.-I.Kondo,T. MurakamiandT.Shinohara,Prog.Theor.Phys.115,201(2006).;K.-I.Kondo,T.ShinoharaandT. Murakami,Prog.Theor.Phys.120,1(2008) [4] K.-I.Kondo,A.Shibata,S.Kato,T.Shinohara,T.Murakami,Phys.Lett.B669(2008)107-118 [5] K.-I.Kondo,A.Shibata,T.Shinohara,S.Kato,Phys.Rev.D83(2011)114016 [6] A.Shibata,K.-I.Kondo,S.KatoandT.Shinohara,Phys.Rev.D87(2013)5,05401 [7] AkihiroShibata,Kei-IchiKondo,SeikouKato,ToruShinohara,PoSLATTICE2013(2014) [8] A.Shibata,K.-I.Kondo,S.KatoandT.Shinohara,PoSLATTICE2014(2015)340 [9] A.Shibata,K.-I.Kondo,S.KatoandT.Shinohara,KEK-PREPRINT-2015-49CHIBA-EP-214 [10] AkihiroShibata,Kei-IchiKondo,SeikouKato,ToruShinohara,PoSLATTICE2015(2016)320 [11] A.Shibata,K.-I.KondoandT.Shinohara,Phys.Lett.B691:91-98(2010) [12] Y.M.Cho,Phys.Rev.D21,1080(1980).Phys.Rev.D23,245(1981);Y.S.DuanandM.L.Ge, SinicaSci.,11,1072(1979);L.FaddeevandA.J.Niemi,Phys.Rev.Lett.82,1624(1999);S.V. Shabanov,Phys.Lett.B458,322(1999).Phys.Lett.B463,263(1999). [13] A.Shibata,S.Kato,K.-I.Kondo,T.Shinohara andS.Ito,POS(LATTICE2007)331 [14] NigelCundy,Y.M.Cho,WeonjongLee,JaehoonLeem,Phys.Lett.B729192-198(2014) [15] ShinyaGongyo,TakumiIritaniandHideoSuganuma,Phys.Rev.D86(2012)094018 [16] H.SuganumaandN.Sakumichi,Phys.Rev.D90(2014)11,111501 [17] A.DiGiacomo,M.Maggiore,andS.Olejnik,Phys.Lett.B236,199(1990);Nucl.Phys.B347,441 (1990). [18] K.Yagi,T.HatsudaandY.Miake,Quark-GluonPlasma(CambridgeUniv.Press,Cambridge2005) 6