ebook img

Quantum transport in Dirac materials: signatures of tilted and anisotropic Dirac and Weyl cones PDF

1.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum transport in Dirac materials: signatures of tilted and anisotropic Dirac and Weyl cones

QuantumtransportinDiracmaterials: SignaturesoftiltedandanisotropicDiracandWeylcones Maximilian Trescher, Björn Sbierski, Piet W. Brouwer and Emil J. Bergholtz Dahlem Center for Complex Quantum Systems and Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany (Dated:April2,2015) We calculate conductance and noise for quantum transport at the nodal point for arbitrarily tilted and anisotropicDiracorWeylcones.Tiltedandanisotropicdispersionsaregenericintheabsenceofcertaindiscrete symmetries,suchasparticle-holeandlatticepointgroupsymmetries. Whereasanisotropyaffectstheconduc- tanceg,butleavestheFanofactorF (theratioofshotnoisepowerandcurrent)unchanged,atiltaffectsbothg andF.SinceF isauniversalnumberinmanyothersituations,thisfindingisremarkable.Weapplyourgeneral 5 considerationstospecificlatticemodelsofstrainedgrapheneandapyrochloreWeylsemimetal. 1 0 PACSnumbers: 72.10.Bg,03.65.Vf,05.60.Gg 2 r p I. INTRODUCTION port, affecting both the conductance and the Fano factor in A absenceofdisorder. WefindthetiltdependenceoftheFano 1 Drivenbyacombinationofkeyadvancesinmaterialsfab- factorF remarkable,becauseinmanycasesofinterestF was rication and profound conceptual progress, the past decade foundtobeanumberwithaconsiderabledegreeofuniversal- ] ity[22,24,26–28]. Ourresultsapply—withvariousdegrees has witnessed an explosive increase in the study of elec- l l tronicsystemsdispersinglinearlyaroundisolatedbandtouch- ofnumericalrelevance—toanumberofexperimentallyrel- a evantsystemsforwhichtiltedandanisotropicconicaldisper- h ing points [1]. Notably, this includes graphene [2, 3], vari- - oustwo-dimensionalorganiccompounds[4],andthesurface sioneitheroccurgenerically,asinthecaseofWeylsemimet- s als,orforwhichtheforbiddingsymmetriesareeasilybroken, e states of three-dimensional topological insulators [5–8]. In m three dimensions, a Dirac semimetal [9, 10], which has two suchasstrainedgraphene. coinciding linear band touching points with opposite chiral- . at ity, was observed experimentally [11, 12], and the first Weyl m semimetal[13,14],whichhasnon-degenerateband-touching II. TILTEDANDANISOTROPICCONES points,wasobservedveryrecently[15–17]. Subsequentlythe - d first transport measurements on Weyl semimetals were per- In the vicinity of a nodal point, a generic Dirac or Weyl n formed [18, 19]. A Weyl semimetal phase is also predicted Hamiltoniancanbewrittenas o tooccur,e.g.,inmultilayerstructures[20]andpyrochloreiri- c (cid:88) [ dates[13]. H = vijkiσj +(aiki u)σ0, (1) Byvirtueofstochiometry,theFermilevelliesexactlyatthe − i,j 2 nodalpointofthelow-energy“cones”inmanyofthesemate- v rials,andtheirelectronicbehaviorisneitherthatofinsulators where the sum is over i,j = x,y or i,j = x,y,z for di- 4 —thereisnogap—northatofconventionalmetals—there mensionalitiesd = 2andd = 3,respectively. Furtherσ 3 x,y,z isavanishingdensityofstatesatthenodalpoint.Indeedithas are the Pauli matrices and σ is the 2 2 unit matrix. The 0 0 × 4 been shown experimentally [3, 21] and theoretically [22–24] dispersion is shown schematically in Fig. 1. The “tilt” term 0 thattheconductivityσreachesaminimalbutfinitevalueata proportionaltoa istypicallydiscarded, asitdoesnotaffect i . nodalpointintwodimensions,whereasanodalpointinthree the eigenspinors and, hence, the topology of the band struc- 1 0 dimensionsischaracterizedbyafiniteconductanceG,itscon- ture. As we show below, inclusion of this term does affect 5 ductivityσbeingzero[24,25]. TheFanofactorF,definedas transport at the nodal point, however. Tilts can occur only if 1 theratioofshotnoisepowerandcurrent,wasfoundtobean particle-holesymmetryisabsent,andtiltisadditionallycon- : excellentindicatorofthequantumnatureofelectronictrans- strained by point group symmetries. With a suitable choice v i port at the nodal point, taking the universal sub-Poissonian ofthepseudospinquantizationaxis,theanisotropymatrixvij X valueF = 1/3ingraphene[22]. InWeylsemimetalsF was canbebroughttoupperdiagonalform,v =v =v =0. yx zx zy r foundtodiscriminatebetweenapseudoballisticregime[24]at Anisotropies are generic if the cone is not located at a high a weakdisorderandadiffusiveregimeatstrongdisorder[25]. symmetrypointintheBrillouinzone. UnliketheconductanceG,whichretainsadependenceonthe Considering graphene as an important example, we note ratioW/LofsamplewidthW andsamplelengthL,theFano that the trigonal “warping” of Dirac cones respects the crys- factorF isindependentofbothW andL. talline symmetries and leads to anisotropies, but only at Anisotropy and tilt of the cones are often neglected, es- quadraticorderinthemomentumk. Theanisotropiestolin- sentially for two distinct reasons: (i) they are forbidden by ear order (1), which amount to a “squeezing” of the cone symmetry in important special cases, such as graphene, and along some direction, are, just as any tilt of the cone, for- (ii) they do not alter the topology of the low-energy theory. bidden by the threefold point group symmetry of the honey- Here, however, we demonstrate that tilts and, to a lesser ex- comblattice,combinedwiththelocationoftheDiracconesat tent, anisotropies lead to clear signatures in quantum trans- high-symmetrypointsintheBrillouinzone.However,assoon 2 The Fano factor, the ratio of shot noise and current, is given by[29] (cid:82) dd−1k T(k )(1 T(k )) ⊥ ⊥ ⊥ F = − . (4) (cid:82) dd−1k T(k ) ⊥ ⊥ No anisotropy, no tilt.– For the isotropic cone without tilt (a = 0,v = v δ ) the conductance and Fano factor are i ij 0 ij knownfromtheliterature[22,24,25], 1 1 g = , F = , (d=2), (5) π 3 Figure1. (Coloronline)AtiltedDiracconeintwodimensions. The ln2 1+2ln2 g = , F = , (d=3). (6) momentumcoordinatesarelabeledkx andky; thethirddimension 2π 6ln2 representsenergy.Transparentplanesindicatezero-energyplane(vi- olet)andtilta=(−0.5,0)(greenplane),respectively. Anisotropy, no tilt.– For the general anisotropic case but withouttilt,a =0,i=1,...,d,onefinds i asthethreefoldrotationsymmetryisrelaxedanisotropiesoc- g = 1vx2x+vx2y (d=2), (7) cur. If, in addition, second-nearest-neighbor hopping is also π v v xx yy takenintoaccounttheparticle-holesymmetryislost,andthe cones acquire finite tilts. This scenario applies to strained whiletheFanofactorisunaffectedbytheanisotropy; i.e., F graphene and will be discussed in more detail below. For isgivenbyEq.(5). Forthediagonalcase(vxy =0)thisresult three-dimensional Weyl semimetals, the band touching oc- can be understood as a simple scaling of the y coordinate, curatlowersymmetrypoints;henceanisotropiesandtiltsare whichaffectstheconductanceg,butnottheFanofactorF. In ubiquitous. threedimensionstheexactresultinthediagonalcase(vxy = v =v =0)isgivenbythecorrespondingrescaling xz yz III. TRANSPORT:LOW-ENERGYTHEORY g = ln2 vx2x (d=3), (8) 2π v v yy zz WecalculatetheconductanceGandtheFanofactorF for whilethereisnosimpleformulaforthegeneralcase.Still,the a region of length L and width W, taking the limit W L (cid:29) Fanofactorremainsunaffectedbyanyanisotropyandisgiven inordertoeliminateaspuriousdependenceonthetransverse byEq. (6). boundaryconditions[22]. Wechoosethexaxisinthetrans- No anisotropy, tilted cones.– Although a closed analytical portdirection,sothatthenodalsemimetalcorrespondstothe solutionforatiltedDiracconeispossibleintwodimensions, region 0 < x < L, whereas the source and drain leads have theexplicitexpressionsaretoolengthytobereproducedhere. x < 0andx > L,respectively. Thepotentialuissettozero Instead,wewillpresentanumericalevaluationofthesolution for0<x<L,tomodeltransportatthenodalpoint. Wetake forrepresentativevaluesofthetiltparametersa ,a ,anda the limit u for x < 0 and x > L to model strongly x y z dopedleads.→ ∞ forfixedvaluesofvij = δij. Withoutanisotropythedimen- sionlessconductancegandtheFanofactordependonthetotal The transverse momentum k = k (d = 2) or k = ⊥ y ⊥ magnitudea2 =a2+a2 (d=2)ora2 =a2+a2+a2ofthe (k ,k )(d=3)isconserved,andforeachvalueofk wecal- x y x y z y z ⊥ tiltandtheangleϕ=arccos(a /a)betweenthetiltaxisand culate the transmission coefficient T(k⊥) by matching wave | x| functions in the sample and the leads (see Appendix for de- tails). TheconductanceGperconeisthengivenbytheLan- g F dauerformula 0.40 0.41 e2 (cid:18)W(cid:19)d−1(cid:90) 0.35 a0.0 00..3490 G= dd−1k T(k ). (2) 0.30 0.38 h 2π ⊥ ⊥ 0.25 0.1 0.37 0.20 0.3 0.36 The aspect-ratio dependence can be partially eliminated by 0.5 0.35 0.15 0.7 0.34 changingtothedimensionlessconductancereferredtoacube, 0.10 0.33 0.9 definedbytherelations 0 π8 π4 38π π2 ϕ 0 π8 π4 38π π2 ϕ e2 (cid:18)W(cid:19)d−1 G= g. (3) h L Figure2.(Coloronline)DimensionlessconductancegandFanofac- Intwodimensionsgisidenticaltotheconductivityσ.Inthree torF foratiltedtwo-dimensionalDiraccone, asafunctionofthe dimensions, a finite value for g in the limit W, L im- angle ϕ between transport and tilt direction. The tilt strength a is plies a vanishing conductivity σ = GL/W2 = (e→2/h∞)g/L. giveninthelegend. 3 g F 0.16 0.63 g 0.14 a 0.62 0.12 0.0 0.61 4 (1+(cid:15))a ϕ 0.10 0.1 ~s 0.08 0.3 0.60 3 0 00..0046 00..57 00..5589 2 a π/4 0.02 0.9 0.57 1 π/2 0 π8 π4 38π π2 ϕ 0 π8 π4 38π π2 ϕ 0 (cid:15) 0.2 0.0 0.2 0.4 Figure 3. (Color online) Same as in Fig. 2, but for a three- − dimensionalWeylcone. Figure4. (Coloronline)Dimensionlessconductancegofastrained graphenesheetasafunctionofthestrain(cid:15)fordifferentorientationsϕ thetransportdirectiononly. Thelimita=1correspondstoa (theanglebetweentransportdirectionand(cid:126)s)andsummedoverboth maximallytiltedconewithaflatbandalongthetiltdirection. Dirac cones and spin. The inset shows a hexagon of the graphene ResultsareshowninFigs.2and3ford = 2andd = 3and latticefor(cid:15)=0.2. forrepresentativevaluesofthetiltstrengtha. We note that the results are quantitatively different in two andthreedimensions,butqualitativelyverysimilar. Thereis conesmustbetakenintoaccountsimultaneously. Below,we animportantdifferencebetweenatiltparalleltothetransport provideexplicitresultsfortwospecifictight-bindingmodels. direction,wheregdecreasesuponincreasingthetiltstrength, Strainedgraphene.–In“intrinsic,”unstrainedgraphenethe andatiltperpendiculartothetransportdirection,whereg in- Dirac cones are located at high symmetry points in the Bril- creaseswithincreasingtiltstrength. TheFanofactorF isun- louinzone. Theapplicationofstrainchangesthepositionsof affectedbyatiltinthetransportdirection,andincreaseswith theDiracpointsandtheconesarenolongerprotectedbycrys- increasingtiltifthereisafiniteanglebetweenthetiltdirection tallinesymmetries. Whereasthesimplesttight-bindingmodel and the transport axis. Interestingly, upon averaging over all with nearest-neighbor hopping only is particle-hole symmet- orientationsofthetiltaxis,wefindasystematicbutsmallde- ric, which rules out a tilt of the Dirac cones, realistic tight- creaseinconductanceforbothtwoandthreedimensions.The binding models have longer-range hopping, which lifts the mainconclusion,however,isthattheFanofactorisnolonger particle-hole symmetry [30]. As an example, we now apply auniversalnumberoncethetiltofthedispersionistakeninto the above calculations to the model of quinoid-type strained account, but depends on the magnitude and direction of the graphene,asdescribedbyGoerbigetal. inRef. 4. Transport tilt. propertiesofstrainedgraphenehavebeenstudiedearlier[31], The analytical solution for a two-dimensional Dirac cone butwithouttheinclusionofatiltoftheDiraccones. takes a simple form if the tilt axis and the transport direc- A schematic of the tight-binding model for quinoid-type tion are collinear (ϕ = 0). In that case one finds g = strained graphene is shown in the inset of Fig. 4. It con- (1/π)√1 a2,F =1/3. Further,forsmalltiltstrengthsitis sists of a honeycomb lattice which is extended/compressed − possibletoexpandtheanalyticalsolutionintwodimensions. in the direction perpendicular to the lattice vector (cid:126)s, such Wefind that each hexagon has four “short” bonds of length a and 1 a2 (cid:18)4 (cid:19) two “long” bonds of length a(cid:48) for positive strain (cid:15) > 0. g = + sin2ϕ 1 + (a4), (9) π 2π 3 − O Strainismeasuredintermsofadimensionlessstrainparame- ter(cid:15) = a(cid:48)/a 1. Thetight-bindingmodelofRef.4contains 1 2a2 − F = + sin2ϕ+ (a4), (10) nearest-neighborhoppingamplitudesaswellasnext-nearest- 3 45 O neighborhopping,andwetakethemagnitudesofthehopping which deviates less then 1% from the exact value up to a = amplitudes from Ref. 4. Figure 4 shows the conductance g 0.5. for strains 0 < (cid:15) < 0.3 and three representative angles ϕ. | | Anisotropy and tilted cones.– In the presence of both The strain is perpendicular to the(cid:126)s direction (as depicted in anisotropy and tilt the dimensionless conductance and the Fig. 4). Theangleϕisdefinedastheanglebetweenthetrans- Fano factor are qualitatively similar as in the absence of portdirectionand(cid:126)s. Thetiltisofordera/v 0.06(v being ∼ anisotropy. However,foratiltintransportdirectiontheFano thevelocityintiltdirection)forthe(alreadyquiteunrealistic) factorchangesiftheanisotropiesarenotorientatedalongthe strain(cid:15)=0.3[4].Asaconsequenceofthisnumericallysmall axis of the reference frames, i.e., if one of v ,v or v is value of the tilt strength, the relative change in Fano factor xy xz yz nonzero. remains small, (cid:46) 0.1% for (cid:15) < 0.3. While this variation is probablyoutofreachofexperimentaldetection,itshowsthat Fano factor F = 1/3 is not strictly “universal” in graphene IV. APPLICATIONTOLATTICEMODELS butcanbechangedbythebreakingofsymmetries. Weyl semimetal.– As an example in three dimensions we Ingenericlatticemodels,theconesarebothanisotropicand consider a tight-binding model of a spin-orbit coupled py- tilted, and moreover, contributions from an even number of rochloreslabwhichhostsaWeylsemimetalphasewithWeyl 4 V. DISCUSSION g F 0.9 0.62 We have investigated the effect of anisotropies and tilts of 0.8 0.61 DiracandWeylconesonquantumtransportpropertiesatthe 0.7 nodal point. Neither anisotropies nor tilts change the topol- 0.60 0.6 (cid:126)s ogy of the band structure and for this reason they are often 0.59 0.5 neglected. We showed that a tilt nevertheless affects the di- 0.4 0.58 mensionlessconductancegandFanofactorF. Thelatterob- servation is remarkable, since the Fano factor is often found 0.3 0.57 0.4 0.2 0.0 0.2 to be a universal number, that does not depend on system- − − t2 specificdetails. Applying our results to the example of strained graphene, we found that the inclusion of a tilt of the Dirac cone leads Figure 5. (Color online) Dimensionless conductance g (solid line) toasizabledirectionaldependenceoftheconductanceg. For andFanofactorF (dashedline)forapyrochloreslabasafunctionof realisticstrains,thetilteffectontheFanofactorF isnonzero, thein-planenext-nearest-neighborhoppingamplitudet2(leftpanel). though numerically very small — underlining the symme- Transportdirectionisparalleltothecrystalaxis(cid:126)s(asshowninthe tryprotectednatureof“universal”quantumtransportintwo- upper right panel). Hopping parameters are indicated in the lower dimensional Dirac materials. The consequences of a tilted rightpanel. dispersion, including a shift of the Fano factor F, may be moresignificantforothertwo-dimensionalmaterialspossess- ingmorestronglytiltedDiraccones,suchastheorganiccom- poundα–(BEDT-TTF) I [4,34]. 2 3 conesthatmaybesignificantlytilted[32,33]. Inthiscasethe WhilethefirstobservationsofWeylsemimetalsareagreat latticestructureislayered,seeFig.5,sothatitisintrinsically experimental success, they all observed time-reversal sym- anisotropicandnoexternalstrainneedstobeappliedinorder metric Weyl semimetals [16? –19]. These Weyl semimet- toliftanysymmetriesforbiddingatiltoftheWeylcone. The alshaveadditionalstatescrossingtheFermilevelopposedto model consists of a tight-binding Hamiltonian that contains the still hypothetical time-reversal symmetry breaking Weyl spin-orbit coupling, in-plane and interplane nearest-neighbor semimetals [13], where the only states crossing the Fermi hoppingamplitudes,andin-planenext-nearest-neighborhop- level are Weyl nodes, as is the case in our example of a py- ping amplitudes. It was found to have a Weyl-semimetal rochlore slab. Hence the full transport properties could be phase for a certain range of parameter space, with a tilt of obtained from the combined contribution of the Weyl nodes, the Weyl cone that depends on the magnitude of the next- whereasintheexperimentallyobservedmaterialsoneshould nearest-neighbor hopping amplitude t . There are six Weyl accountalsofortheotherstatesattheFermilevel. 2 cones, located on the Γ–M lines [33] in the projected two- dimensional Brilluoin zone of the slab geometry. The Weyl In a recent work three of us proposed that the Fano factor pointsarerelatedtoeachotherbythesixfoldsymmetryofthe can be used as a universal quantity to discriminate different underlyinglattice. Wehavenumericallydeterminedtheposi- transport regimes in a disordered Weyl semimetal [25]: In a tionaswellastiltandanisotropyparametersasafunctionof calculationthatdidnotincludetiltoranisotropy,F wasfound thenext-nearest-neighborhoppingt ,keepingtheothermodel totaketheballisticvalue(6)belowacriticaldisorderstrength, 2 parameters, defined in the lower right panel of Fig. 5, fixed whereasF approachesthesmallerdiffusivevalueF =1/3at (t = 1,t =2,λ =0.3,λ =0.2),andcalculatedthedi- larger disorder. Our present results indicate that there is no 1 ⊥ 1 2 − mensionlessconductancegandtheFanofactorF.Theresults universalvaluefortheFanofactorintheballisticlimit. How- areshowninFig.5foranin-planetransportdirectionaligned ever,wealsofindthatatiltoftheWeylconecanonlyincrease with one of the crystal axes as indicated in the inset. The F,sothattheFanofactorcontinuestobeapowerfulindicator dependence on the orientation of the pyrochlore slab is very discriminatingthepseudoballisticanddiffusiveregimes. weak, less than 1% for both g and F, which can be under- stoodasaconsequenceoftherebeingsixdifferentcontribut- For tilted and anisotropic cones the conductance varies ingcones: whenrotatingthesample, someconesarerotated strongly with transport direction and can be either higher or “away” from the transport direction, while others are rotated lower than the conductance of the symmetric cone. In con- “towards” the transport direction. The changes in transport trasttheFanofactorisonlysensitivetothetiltoftheconeand, propertiesindifferentconesthenhaveoppositesigns(cf. Fig. whereasitstilldependsontheanglebetweentiltandtransport 3), leading to a very weak angular dependence of g and F. direction, the Fano factor always increases for tilted cones. The magnitude of the dimensionless conductance g and the Theseinsightsshouldbeusefulfortheexperimentalidentifi- Fano factor F can however differ substantially from the val- cationandcharacterizationofarangeofWeylandDiracma- uescalculatedintheabsenceofatilt. terialsbymeansoftransportmeasurements. 5 ACKNOWLEDGMENTS AppendixA We calculate ballistic transport in a scattering region of length L and width W as described in the main text. The Hamiltonianisgivenby (cid:88) H = v k σ +(a k u)σ . (A1) ij i j i i 0 − ij We acknowledge related discussions with Teemu Ojanen Thea k termscanbeinterpretedasatiltoftheconeandv i i ij and Masafumi Udagawa. E.J.B. and M.T. are supported by asad dmatrixdescribingtheanisotropyofthedispersion, × DFG’s Emmy Noether program (BE 5233/1-1). This work whereitissufficienttohavenonzeroentriesontheuppertri- was in part supported by the Helmholtz VI “New States of angular to describe all possible anisotropies of a cone. The MatterandTheirExcitations.” dispersionisgivenby (cid:15) (k)= u+a k +a k +a k 1,2 x x y y z z − (cid:113) k2(v2 +v2 +v2 )+2k (k (v v +v v )+k v v )+k2(v2 +v2 )+2k k v v +k2v2 . (A2) ± x xx xy xz x y xy yy xz yz z xz zz y yy yz y z yz zz z zz Whenever the above square-root expression occurs we will calculate the transmission and reflection amplitude by wave abbreviateitas√ . Thenthespinorsare functionmatchingatthebeginningandtheendofthescatter- ··· ingregion(x=0,L):   k v i(k v +k v ) x xx x xy y yy χ1,2 =−kxvxz+−kyvyz1+kzvzz∓√··· (A3) √1vinχin+ √rvrχr =αχ1+βχ2, (A5) t and the velocities used to normalize incoming and outgoing √vtχt =αχ1expik˜1L+βχ2expik˜2L . (A6) plane waves are v(k) = ∂ (cid:15)(k). We consider the limit of k highly doped leads (u ) in u = 0 in the scattering → ∞ region. The transverse momentum k = k (d = 2) and The total transmission probability can be obtained by sum- ⊥ y k =(k ,k )(d=3)isquantizedduetothefinitewidthW, mingoverallmodes: ⊥ y z 2πn 2πm k = k = . (A4) (cid:88) y W z W T = t(k⊥)2. (A7) | | Foranymodeofgivenmomentumk ,k wedeterminethex k⊥ y z componentofthewavevectorsk ,k ,k oftheincoming,re- in r t flected,andtransmittedwaveandthexcomponentinthescat- In the limit L 0 one may replace the sum by an integral teringregionk˜ bysolvingEq. (A2)for(cid:15)(k)=0. Thenwe whichgivesWEq.→(2)ofthemaintext. 1,2 [1] T.Wehling,A.Black-Schaffer, andA.Balatsky,Adv.Phys.63, [6] J.E.MooreandL.Balents,Phys.Rev.B75,121306(2007). 1(2014). [7] R.Roy,Phys.Rev.B79,195322(2009). [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, [8] Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, Y.Zhang, S.V.Dubonos, I.V.Grigorieva, andA.A.Firsov, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Science306,666(2004). Q.Niu,X.-L.Qi,S.-C.Zhang,X.-C.Ma, andQ.-K.Xue,Nat. [3] K.S.Novoselov, A.K.Geim, S.V.Morozov, D.Jiang, M.I. Phys.6,584(2010). Katsnelson,I.V.Grigorieva,S.V.Dubonos, andA.A.Firsov, [9] Z.Fang,N.Nagaosa,K.S.Takahashi,A.Asamitsu,R.Math- Nature438,197(2005). ieu,T.Ogasawara,H.Yamada,M.Kawasaki,Y.Tokura, and [4] M.O.Goerbig,J.-N.Fuchs,G.Montambaux, andF.Piechon, K.Terakura,Science302,92(2003). Phys.Rev.B78,045415(2008). [10] S.Murakami,NewJ.Phys.9,356(2007). [5] L.Fu,C.L.Kane, andE.J.Mele,Phys.Rev.Lett.98,106803 [11] Z.K.Liu,B.Zhou,Y.Zhang,Z.J.Wang,H.M.Weng,D.Prab- (2007). hakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, 6 andY.L.Chen,Science343,864(2014). [20] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 [12] Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. (2011). Weng,D.Prabhakaran,S.-K.Mo,H.Peng,P.Dudin,T.Kim, [21] Y.Zhang,Y.-W.Tan,H.L.Stormer, andP.Kim,Nature438, M.Hoesch,Z.Fang,X.Dai,Z.X.Shen,D.L.Feng,Z.Hus- 201(2005). sain, andY.L.Chen,NatureMater.13,677(2014). [22] J.Tworzydło,B.Trauzettel,M.Titov,A.Rycerz, andC.W.J. [13] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Beenakker,Phys.Rev.Lett.96,246802(2006). Phys.Rev.B83,205101(2011). [23] M.I.Katsnelson,Eur.Phys.J.B51,157(2006). [14] P.HosurandX.Qi,C.R.Phys.14,857(2013). [24] P.Baireuther,J.M.Edge,I.C.Fulga,C.W.J.Beenakker, and [15] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, C. Zhang, J.Tworzydło,Phys.Rev.B89,035410(2014). R. Sankar, S.-M. Huang, C.-C. Lee, G. Chang, B. Wang, [25] B.Sbierski,G.Pohl,E.J.Bergholtz, andP.W.Brouwer,Phys. G.Bian,H.Zheng,D.S.Sanchez,F.Chou,H.Lin,S.Jia,M.Z. Rev.Lett.113,026602(2014). Hasan,arxiv:1502.03807v1. [26] C. W. J. Beenakker and M. Büttiker, Phys. Rev. B 46, 1889 [16] L.Lu,Z.Wang,D.Ye,L.Ran,L.Fu,J.D.Joannopoulos, and (1992). M.Soljacˇic´,arxiv:1502.03438v1 (2015). [27] R.A.Jalabert,J.-L.Pichard, andC.W.J.Beenakker,Europhys. [17] B.Q.Lv,H.M.Weng,B.B.Fu,X.P.Wang,H.Miao,J.Ma, Lett.27,255(1994). P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, [28] H.U.BarangerandP.A.Mello,Phys.Rev.Lett.73,142(1994). X.Dai,T.Qian, andH.Ding,arxiv:1502.04684v1 (2015). [29] M.Büttiker,Phys.Rev.Lett.65,2901(1990). [18] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, [30] J.-C.Charlier,J.-P.Michenaud,X.Gonze, andJ.-P.Vigneron, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Phys.Rev.B44,13237(1991). arxiv:1503.01304v1 (2015). [31] F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, Phys. [19] C. Zhang, S.-Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, Rev.B84,195404(2011). N. Alidoust, C.-C. Lee, S.-M. Huang, H. Lin, M. Neupane, [32] M. Trescher and E. J. Bergholtz, Phys. Rev. B 86, 241111 D.S.Sanchez,H.Zheng,G.Bian,J.Wang,C.Zhang,T.Neu- (2012). pert,M.Z.Hasan, andS.Jia,arxiv:1503.02630v1 (2015). [33] E.J.Bergholtz,Z.Liu,M.Trescher,R.Moessner, andM.Uda- gawa,Phys.Rev.Lett.114,016806(2015). [34] S. Katayama, A. Kobayashi, and Y. Suzumura, J. Phys. Soc. Jpn.75,054705(2006).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.