ebook img

Quantum tomography and nonlocality PDF

0.47 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum tomography and nonlocality

Quantumtomographyandnonlocality Evgeny V. Shchukin∗ InstituteofPhysics,Johannes-GutenbergUniversityofMainz,Staudingerweg7,55128Mainz,Germany Stefano Mancini† School of Science and Technology, University of Camerino, 62032 Camerino, Italy & INFN Sezione di Perugia, I-06123 Perugia, Italy 5 1 Wepresentatomographicapproachtothestudyofquantumnonlocalityinmultipartitesystems. 0 2 Bellinequalitiesfortomogramsbelongingtoagenerictomographicschemearederivedbyexploiting n toolsfromconvexgeometry. Then,possibleviolationsoftheseinequalitiesarediscussedinspecific a J tomographicrealizationsprovidingsomeexplicitexamples. 2 1 ] h p I. INTRODUCTION - t n a The Bell inequalities [1] demonstrate paradigmatic difference of quantum and classical worlds. They u q wereoriginallywrittenfordichotomic(spin−1)variables[2]. Spin−1 operatorsrealizetheLiealgebraof [ 2 2 1 the SU(2) group. For several spin particles their spin operators form Lie algebra of the tensor product of v 2 theLiealgebras. DuetoalgebraicequivalenceoftheoperatorssatisfyingcommutationrelationsoftheLie 8 5 algebraconstructedfromparticlespinoperatorsandconstructedfromcreationandannihilationoperatorsof 2 0 a field, one can obtain Bell inequalities also for the case of continuous variables besides discrete ones [3]. . 1 Beyond the specific operators involved in the Bell inequalities, their possible violations obviously depend 0 5 onthestateunderconsideration. 1 : v Fora(multipartite)classicalsystemwithfluctuations, thesystemstateisdescribedbymeansofajoint i X probability distribution function of random variables corresponding to the subsystems. In contrast, for a r a (multipartite) quantum system the state is described by the density matrix. In view of this difference the calculations of the system’s statistical properties (including correlations) are accomplished differently in classicalandquantumdomains. Recently, a probability representation of quantum mechanics has been suggested [4]. This representa- tion, equivalent to all other well known formulations of quantum mechanics (see, e.g. [5]), goes back to quantumtomography,atechniqueusedforquantumstatereconstruction[6]. Theapproachmakesuseofa ∗Electronicaddress:[email protected] †Electronicaddress:[email protected] 2 set of fair probabilities, tomograms, to “replace” the notion of quantum state. It has also been understood [7] that for classical statistical mechanics the states with fluctuations can be described as well by tomo- grams related to standard probability distributions in classical phase-space. A comparison of classical and quantumtomogramscanbefoundinRef.[7,8]. Thus,intheprobabilityrepresentation,tomogramsturnedouttobeauniquetooltodescribebothclassi- calandquantumstates. Asaconsequencetheyrepresentanaturalbedwheretoplaceinequalitiesmarking the boarder-line between quantum and classical worlds. Tomograms can be either continuous or discrete variablefunctionsdependingonthetomographicscheme(realization). Inbothcasestheymightbedirectly used to test nonlocality. This possibility was described for symplectic tomography [9] in bipartite system [10]andspintomography[11]stillinbipartitesystem[12]. Here we shall derive Bell inequalities for multipartite systems in terms of tomograms belonging to a generic tomographic scheme. Then, we shall discuss the possibility to violate such inequalities depending onthetomographicrealization. Thelayoutofthepaperisthefollowing. InSectionIIweformalizequantumtomographyinamultipar- tite setting. Then, in Section III we derive the Bell inequalities in terms of tomograms. In Section IV we providesomeevidencesofviolationsofsuchinequalitiesforspin−1 systemsaswellasforfieldmodesand 2 finallydrawtheconclusionsinSectionV. II. QUANTUMTOMOGRAPHY Herewebrieflyreviewthegeneralquantumtomographyapproachforasinglesystem,bydetailingthree relevantcases(optical[13],spin[11]andphoton-numbertomography[14])andthenextendtheformalism tomultipartitesystems. ThebasicingredientsofanytomographicschemeareaHilbertspaceHassociatedwithspaceofthesys- temunderconsiderationandapairofmeasurablesets(X,Λ)withmeasuresµ(x)andν(λ)correspondingly. Moreprecisely,thesetofsystemstatesisthesetS(H)ofHermitiannon-negativetrace-classoperatorson H with trace 1. Usually the set X is the spectrum of an observable of the system and the set Λ plays the roleoftransformations. We use the notation P(X) for the set of probability distributions on X, i.e. the set of nonnegative measurablefunctionsp : X → Rnormalizedtooneinthefollowingsense(cid:82) p(x)dµ(x) = 1. Both sets S(H) and P(X) are closed with respect to the convex combinations: if (cid:37)ˆ,σˆ ∈ S(H) (resp. p(x),q(x) ∈ P(X))anda ∈ [0,1]then a(cid:37)ˆ+(1−a)σˆ ∈ S(H) (resp. ap(x)+(1−a)q(x) ∈ P(X)). 3 Definition1 A map T : S(H) → RX×Λ is called tomographic map if the following three conditions are satisfied: 1. for any (cid:37)ˆ ∈ S(H) the image T((cid:37)ˆ) : X × Λ → R restricted on the set X × {λ} is a probability densityonX T ((cid:37)ˆ) ∈ P(X) ∀λ ∈ Λ, where T ((cid:37)ˆ) = T((cid:37)ˆ)| : X → R. λ λ X×{λ} 2. themapT preservesconvexcombinations T(a(cid:37)ˆ+(1−a)σˆ) = aT((cid:37)ˆ)+(1−a)T(σˆ), ∀(cid:37)ˆ,σˆ ∈ S(H),a ∈ [0,1]. 3. themapT isone-to-one T((cid:37)ˆ) = T(σˆ) ⇔ (cid:37)ˆ= σˆ. These conditions have simple meaning: (i) means that the tomogram T((cid:37)ˆ) of any state (cid:37)ˆis a probability distributiononX parameterizedbythepointsofΛ,(ii)isthelinearitycondition,and(iii)requiresthatthe tomogramofeachstatebeunique,or,inotherwords,thatanystatecanbeunambiguousreconstructedfrom itstomogram. Inthepresentworkwedealwithtomographicmapsofthefollowingform (cid:16) (cid:17) T((cid:37)ˆ)(x,λ) ≡ p (x,λ) = Tr (cid:37)ˆUˆ(x,λ) , (1) (cid:37)ˆ where Uˆ(x,λ) is a family of operators on H parameterized by points (x,λ) of the set X × Λ. In the examples considered below the state (cid:37)ˆcan be reconstructed from its tomogram p (x,λ) according to the (cid:37)ˆ formula (cid:90) (cid:90) (cid:37)ˆ= p(x,λ)Dˆ(x,λ)dµ(x)dν(λ), (2) X×Λ fortheappropriate(x,λ)-parameterizedfamilyofoperatorsDˆ(x,λ)onH. The set X is the spectrum of an observable Oˆ and the set Λ is a group equipped with a representation (ingeneralprojective)π : Λ → HinH. TheoperatorsUˆ(x,λ)havethefollowingform Uˆ(x,λ) = π(λ)|x(cid:105)(cid:104)x|π†(λ), (3) where |x(cid:105) is an eigenstate of the observable Oˆ. For a group theoretical approach to quantum tomography see[15]. Seealso[16]forarelationtogrupoids. 4 A. Spintomography Letusconsiderasystemwithspinj. Inthiscasewehave: H = C2j+1,X = {−j,−j+1,...,j−1,j} and Λ = SO(3,R). We denote the elements of the sets X and Λ as s and Ω respectively. The measure on X is equal to one on each element, so the corresponding integral is simply the finite sum over 2j +1 terms. The measure on SO(3,R) is Haar’s one. For the group SO(3,R), parameterized with Euler angles Ω ≡ (ϕ,ψ,θ)themeasureν(Ω)readsν(Ω) ≡ ν(ϕ,ψ,θ) = sinψdϕdψdθandtheoperatorUˆ of(3)takes theform Uˆ(s,Ω) = Kˆ(Ω)|j,s(cid:105)(cid:104)j,s|Kˆ†(Ω). (4) Here the vectors |j,s(cid:105), s = −j,−j +1,...,j −1,j are the basis of the space C2j+1 (eigenvectors of the spin projection sˆ ) and the operators Kˆ(Ω) are the operators of the irreducible representation of SO(3,R) z inC2j+1. Theirmatrixelementsaregivenby (cid:115) (j +s(cid:48))!(j −s(cid:48))! (cid:104)j,s|Kˆ(Ω)|j,s(cid:48)(cid:105) = ei(sθ+s(cid:48)ϕ) (j +s)!(j −s)! × coss+s(cid:48)(ψ/2)sins(cid:48)−s(ψ/2)P(s(cid:48)−s,s(cid:48)+s)(cosψ), (5) j−s(cid:48) (α,β) withP (x)theJacobipolynomials. n Thenthetomogramp(s,Ω) ≡ p(s,ϕ,ψ,θ)of(1)is p(s,Ω) = (cid:104)j,s|Kˆ(Ω)(cid:37)ˆKˆ†(Ω)|j,s(cid:105). (6) Due to the property (cid:104)j,s|Kˆ(Ω)|j,s(cid:48)(cid:105) = (−1)s(cid:48)−s(cid:104)j,−s|Kˆ(Ω)|j,−s(cid:48)(cid:105), the tomogram does not depend on theangleθ,i.e. p(s,ϕ,ψ,θ) ≡ p(s,ϕ,ψ). Finally,theoperatorDˆ of(2)results j (cid:88) Dˆ(s,Ω) = (cid:104)j,n|Dˆ(s,Ω)|j,m(cid:105)|j,n(cid:105)(cid:104)j,m|, n,m=−j wherethematrixelements(cid:104)j,n|Dˆ(s,Ω)|j,m(cid:105)aregivenbythefollowingexpression (−1)s+m (cid:88)2j (cid:104)j,n|Dˆ(s,Ω)|j,m(cid:105) = (2j +1)2 8π2 3 j3=0    × (cid:88)j3 (cid:104)j,k|Kˆ(Ω)|j,0(cid:105) j j j3 j j j3 , (7) n −m k s −s k k=−j3 intermsofWigner3j-symbols. 5 B. Opticaltomography Here we have : H = L (R), X = R and Λ = {eiθ|θ ∈ [0,2π]}. The measures on X and Λ are 2 Lebegue’sones. TheoperatorcorrespondingtoEq.(3)reads Uˆ(X,θ) = Rˆ(θ)|X(cid:105)(cid:104)X|Rˆ†(θ), (8) whereRˆ(θ)istherotationoperator (cid:18) (cid:19) θ Rˆ(θ) = exp i (xˆ2+pˆ2) , 2 actingonandthecanonicalpositionxˆandmomentumpˆoperatorsas      xˆ cosθ −sinθ xˆ Rˆ(θ) Rˆ†(θ) =   . pˆ sinθ cosθ pˆ In other words, Uˆ(X,θ) of (8) is the projector on the rotated eigenvector |X(cid:105) of the position operator xˆ. Thetomogramp(X,θ)of(1)isthediagonalmatrixelement p(X,θ) = (cid:104)X|Rˆ(θ)(cid:37)ˆRˆ†(θ)|X(cid:105). (9) Furthermore,theoperatorDˆ of(2)results 1 (cid:90) (cid:16) (cid:17) Dˆ(X,θ) = |r|exp −ir(X −cosθxˆ−sinθpˆ) dr. 4π C. Photon-Numbertomography Here we have: H = L (R), X = Z = {0,1,...} and Λ = C. We denote the elements of the sets X 2 + andCasnandαrespectively. ThemeasureonX isequaltooneoneachelementandthemeasureonCis (1/π)d2α, where d2α = dReαdImα is the Lebegue’s measure on the real plane. Here, the operator Uˆ is theprojectorontothedisplacedFockstate Uˆ(n,α) = Dˆ(α)|n(cid:105)(cid:104)n|Dˆ†(α), (10) with (cid:20)α−α∗ α+α∗ (cid:21) D(α) ≡ exp √ xˆ−i √ pˆ . 2 2 From(1)thetomogramp(n,α)reads p(n,α) = (cid:104)n|Dˆ(α)(cid:37)ˆDˆ†(α)|n(cid:105). (11) Furthermore,theoperatorDˆ of(2)becomesinthiscase +∞ (cid:88) Dˆ(n,α) = 4(−1)n (−1)mDˆ(α)|m(cid:105)(cid:104)m|Dˆ†(α). m=0 6 D. Tomographyformulti-partitesystems Thegeneralizationformulti-partitesystemsisstraightforward. Definition2 Consider a n-partite system with the state space H⊗n and n tomographic schemes, one for each part with sets (X ,Λ ) and operators Uˆ (x ,λ ) and Dˆ (x ,λ ), k = 1,...,n. The tomographic k k k k k k k k schemeforthewholesystemisthenconstructedasthedirectproductoftheseschemes,byusing n n (cid:89) (cid:89) X ≡ X , Λ ≡ Λ , k k k=1 k=1 n n (cid:79) (cid:79) Uˆ(x,λ) ≡ Uˆ (x ,λ ), Dˆ(x,λ) ≡ Dˆ (x ,λ ), (12) k k k k k k k=1 k=1 where x ≡ (x ,...,x ), λ ≡ (λ ,...,λ ) and the measures µ(x), ν(λ) on X, Λ are direct products of 1 n 1 n µ (x ),...,µ (x )andν (λ ),...,ν (λ )respectively. Thetomogramp(x,λ)ofastate(cid:37)ˆ(generalizing 1 1 n n 1 1 n n (1))is (cid:16) (cid:17) p(x,λ) = Tr (cid:37)ˆUˆ(x,λ) . (13) (cid:82) Foranyλ ∈ ΛitisaprobabilitydistributiononX,thus p(x,λ)dµ(x) = 1. X Remark. Fromthedefinition(12)oftheoperatorUˆ(x,λ)itimmediatelyfollowsthatthetomogramp(x,λ) ofafactorizedstate (cid:37)ˆ= (cid:37)ˆ ⊗...⊗(cid:37)ˆ (14) 1 n isalsofactorized,i.e. p(x,λ) = p (x ,λ )...p (x ,λ ), (15) 1 1 1 n n n wherep (x ,λ )isthetomogramofthestate(cid:37)ˆ . Moregenerally,thetomogramofaseparablestate k k k k +∞ +∞ (cid:37)ˆ= (cid:88)a (cid:37)ˆ(i)⊗...(cid:37)ˆ(i), a (cid:62) 0, (cid:88)a = 1 (16) i 1 n i i i=0 i=0 isalsoseparableinthefollowingsense +∞ p(x,λ) = (cid:88)a p(i)(x ,λ )...p(i)(x ,λ ), (17) i 1 1 1 n n n i=0 (i) (i) wherep (x ,λ )isthetomogramofthestate(cid:37)ˆ . k k k k 7 III. BELLINEQUALITIESFORTOMOGRAMS Let us consider a n-partite system in tomographic representation, whith each subsystem supplied by a tomographic map T , k = 1,...,n. The tomogram p(x,λ) of a state (cid:37)ˆis a function of 2n arguments and k with respect to one half of them it is a probability distribution. We will show that in general it cannot be consideredasaclassicaljointprobability. Definition3 Foranyk = 1,...,nletY andZ betwomeasurablesetssuchthat k k (cid:91) (cid:92) X = Y Z , Y Z = ∅, k k k k k (cid:81) andforanyλ ∈ Λ letA (λ )beadichotomicrandomvariableonX = X suchthat k k k k k k (cid:16) (cid:17) P(A (λ ) = 1) = (cid:82) Tr (cid:37)ˆUˆ (x ,λ ) dµ (x ), k k Y k k k k k k (cid:16) (cid:17) P(A (λ ) = −1) = (cid:82) Tr (cid:37)ˆUˆ (x ,λ ) dµ (x ). (18) k k Z k k k k k k SymbolicallythevariablesA (λ )canbewrittenas k k   1 if x ∈ Y , k k A (λ ) = (19) k k −1 if x ∈ Z k k in the coordinate system deformed by the operator Uˆ (x ,λ ). The joint probability distribution of the k k k randomvariablesA (λ ),...,A (λ ),namely 1 1 n n p (λ ,...,λ ) = P(A (λ ) = ε ,...,A (λ ) = ε ), ε1,...,εn 1 n 1 1 1 n n n whereε = ±1,isgivenby k (cid:90) (cid:90) p (λ ,...,λ ) = ... p(x,λ)dx, (20) ε1,...,εn 1 n W1 Wn with   Y if ε = 1, k k W = k Z if ε = −1. k k ThecorrelationfunctionofA (λ ),...,A (λ )results 1 1 n n (cid:10) (cid:11) E(λ ,...,λ ) ≡ A (λ )...A (λ ) 1 n 1 1 n n (cid:88) = p (λ ,...,λ )ε ...ε . (21) ε1,...,εn 1 n 1 n ε1,...,εn=±1 8 (1) (2) Definition4 Letusfixtwoparametersλ andλ fork = 1,...,nanddenote k k E(j ,...,j ) ≡ E(λ(j1),...,λ(jn)), j = 1,2. (22) 1 n 1 n k Since each index j can take 2 values independently on all the other indices, there are 2n correlation k functions(22). Thenwedefineby (cid:16) (cid:17) e ≡ E(j ,...,j ) ∈ R2n. (23) 1 n thevectorofthesecorrelationfunctionswithsomeorderofmulti-indices(j ,...,j ). 1 n It is convenient to enumerate the functions E(j ,...,j ). For this purpose we use the binary base with 1 n “digits”1and2insteadof0and1. Thismeansthatweusethefollowingone-to-onecorrespondence {1,...,2n} (cid:51) j ↔ (j ,...,j ), j = 1,2, 1 n k wherej and(j ,...,j )arerelatedtoeachotheraccordingto 1 n j = (j −1)2n−1+...+(j −1)2+j . (24) 1 n n Byvirtueofsuchanordering,thevectore(23)canbewrittenas (cid:16) (cid:17) (cid:16) (cid:17) e = E(1),...,E(2n) = E(1,...,1),...,E(2,...,2) ∈ R2n. (25) What region Ω ⊂ R2n fills the vector e of (25)? Due to the fact that each observable has only two n outcomes±1itfollowsthateachcorrelationfunction(22)isboundedbyonebyabsolutevalueand,so,the setΩ isasubsetof2n-dimensionalcube[−1,1]2n. n Supposethatitispossibletomodeltheresultofthemeasurementbyarandomvariable,A (j ),which k k cantaketwovalues±1. Weassumethattheserandomvariablescanbearbitrarycorrelated. Definition5 Letusdefineby (cid:16) (cid:17) p(i (1), ...,i (2)) ≡ P A (1) = i (1),...,A (2) = i (2) , (26) 1 n 1 1 n n the joint probability distribution for random variables A (j ), with i (j ) = ±1. Since each index i (j ) k k k k k k cantakeindependently2valueswehave22n numbers(26)whichcompletelydescribestatisticalcharacter- isticsoftherandomvariablesunderconsideration. Weenumeratethemwithasinglenumberi = 1,...,22n usingthesameruleasforthecorrelationfunctionsE(j),namely {1,...,22n} (cid:51) i ↔ (i (1),...,i (2)), 1 n 9 whereiand(i (1),...,i (2))arerelatedtoeachotheraccordingto 1 n i = (i (1)−1)22n−1+(i (1)−1)2+i (2). (27) 1 n n Enumeratedinsuchawaytheprobabilities(26)forma22n-dimensionalvector p ≡ (p ,...,p ) ∈ R22n. (28) 1 22n Thepoint(28)liesinthestandardsimplex   (cid:12) 22n S22n−1 = (p1,...,p22n) (cid:12)(cid:12) (cid:88)pi = 1,pi (cid:62) 0 ⊂ R22n. (29) (cid:12)   i=1 What region Ω ⊂ R2n fills the vector e (25) when the point p (28) runs over the simplex S n 22n−1 (29)? Toanswerthisquestionwearegoingtoexplicitlyrelateeandpassumingtheformerexpressedlike classicaljointprobabilities. Then,thecorrelationfunctionE(j)isintendedasasimplelinearcombination ofp withpropercoefficients. Lookingat(21)weconsidersuchcoefficients,E(j,i),givenbytheproduct i E(j,i) = i (j )...i (j ), (30) 1 1 n n where j and i (j ) are “digits” of the numbers j and i in the binary representations (24) and (27). The k k k numbersE(j,i),j = 1,...,2n,i = 1,...,22n forma2n×22n matrixE andtherelationbetweeneandp n canthenbewrittenas e = E p. (31) n WeseethattheregionΩ istheimageofthestandardsimplexS n 22n−1 Ω = E (S ), (32) n n 22n−1 where we do not distinguish the linear map E : R22n → R2n and its matrix E in the standard bases of n n R22n andR2n. Thus, we have reduced the problem of finding Bell inequalities to find the set Ω . It means that the n problem of finding Bell inequalities boils down to a standard problem of convex geometry, referred to as convex hull problem: given points c find their convex hull, or facets of maximal dimension of the i correspondingpolytope(fornotionsofconvexgeometrysee,e.g. [17]). NowwewillgettheBellinequalitiesexplicitly. NotethatpermutationsofthecolumnsofthematrixE n do not change their convex hull and that they correspond to permutations of the components of the vector pordifferentorderingsoftheprobabilities(28),soonecansafelypermutecolumnsofE withoutaltering n (31). 10 Theorem1 ThesetΩ isspecifiedbythe(Bell)inequalitiesforthevectorofthecorrelationfunctions n (e,H c) (cid:54) 2n, ∀c = (±1,...,±1). (33) 2n ThematrixH istheHadamardmatrixrecurrentlydefinedas 2n   1 1 H2n = H2⊗...⊗H2, H2 =  . (cid:124) (cid:123)(cid:122) (cid:125) 1 −1 n Proof. ThekeyfactinderivingtheBellinequality(33)isthatthematrixE canbewritteninthefollowing n blockform (cid:16) (cid:17) En = H2n −H2n ... H2n −H2n (34) (cid:124) (cid:123)(cid:122) (cid:125) 2n after appropriate arrangement of its columns. One can rewrite the r.h.s. of (34) as the product of two matrices (cid:16) (cid:17) En = H2n E2n −E2n ... E2n −E2n = H2nAn, whichmeansthatthelinearmapE : R22n → R2n canbedecomposedintotwomaps n E = H ◦A , A : R22n → R2n, H : R2n → R2n. n 2n n n 2n Accordingtothisdecomposition(31)reads e = H q, (35) 2n wherethevectorq = A p ∈ R2n isexplicitlygivenbythefollowingexpression n   p −p +...−p 1 2n+1 (2n−1)2n+1  .  q =  .. . (36)   p −p +...−p 2n 2·2n 22n DefinethefollowingconvexpolytopeO ⊂ RN N O = {x ∈ RN|(x,c) (cid:54) 1, ∀c = (±1,...,±1)}. (37) N As one can easily see the image of the standard simplex S is exactly the polytope O , that is 22n−1 2n A (S ) = O . Fromthisfactwehave n 22n−1 2n Ω = H (O ). (38) n 2n 2n

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.