Quantumtomographyandnonlocality Evgeny V. Shchukin∗ InstituteofPhysics,Johannes-GutenbergUniversityofMainz,Staudingerweg7,55128Mainz,Germany Stefano Mancini† School of Science and Technology, University of Camerino, 62032 Camerino, Italy & INFN Sezione di Perugia, I-06123 Perugia, Italy 5 1 Wepresentatomographicapproachtothestudyofquantumnonlocalityinmultipartitesystems. 0 2 Bellinequalitiesfortomogramsbelongingtoagenerictomographicschemearederivedbyexploiting n toolsfromconvexgeometry. Then,possibleviolationsoftheseinequalitiesarediscussedinspecific a J tomographicrealizationsprovidingsomeexplicitexamples. 2 1 ] h p I. INTRODUCTION - t n a The Bell inequalities [1] demonstrate paradigmatic difference of quantum and classical worlds. They u q wereoriginallywrittenfordichotomic(spin−1)variables[2]. Spin−1 operatorsrealizetheLiealgebraof [ 2 2 1 the SU(2) group. For several spin particles their spin operators form Lie algebra of the tensor product of v 2 theLiealgebras. DuetoalgebraicequivalenceoftheoperatorssatisfyingcommutationrelationsoftheLie 8 5 algebraconstructedfromparticlespinoperatorsandconstructedfromcreationandannihilationoperatorsof 2 0 a field, one can obtain Bell inequalities also for the case of continuous variables besides discrete ones [3]. . 1 Beyond the specific operators involved in the Bell inequalities, their possible violations obviously depend 0 5 onthestateunderconsideration. 1 : v Fora(multipartite)classicalsystemwithfluctuations, thesystemstateisdescribedbymeansofajoint i X probability distribution function of random variables corresponding to the subsystems. In contrast, for a r a (multipartite) quantum system the state is described by the density matrix. In view of this difference the calculations of the system’s statistical properties (including correlations) are accomplished differently in classicalandquantumdomains. Recently, a probability representation of quantum mechanics has been suggested [4]. This representa- tion, equivalent to all other well known formulations of quantum mechanics (see, e.g. [5]), goes back to quantumtomography,atechniqueusedforquantumstatereconstruction[6]. Theapproachmakesuseofa ∗Electronicaddress:[email protected] †Electronicaddress:[email protected] 2 set of fair probabilities, tomograms, to “replace” the notion of quantum state. It has also been understood [7] that for classical statistical mechanics the states with fluctuations can be described as well by tomo- grams related to standard probability distributions in classical phase-space. A comparison of classical and quantumtomogramscanbefoundinRef.[7,8]. Thus,intheprobabilityrepresentation,tomogramsturnedouttobeauniquetooltodescribebothclassi- calandquantumstates. Asaconsequencetheyrepresentanaturalbedwheretoplaceinequalitiesmarking the boarder-line between quantum and classical worlds. Tomograms can be either continuous or discrete variablefunctionsdependingonthetomographicscheme(realization). Inbothcasestheymightbedirectly used to test nonlocality. This possibility was described for symplectic tomography [9] in bipartite system [10]andspintomography[11]stillinbipartitesystem[12]. Here we shall derive Bell inequalities for multipartite systems in terms of tomograms belonging to a generic tomographic scheme. Then, we shall discuss the possibility to violate such inequalities depending onthetomographicrealization. Thelayoutofthepaperisthefollowing. InSectionIIweformalizequantumtomographyinamultipar- tite setting. Then, in Section III we derive the Bell inequalities in terms of tomograms. In Section IV we providesomeevidencesofviolationsofsuchinequalitiesforspin−1 systemsaswellasforfieldmodesand 2 finallydrawtheconclusionsinSectionV. II. QUANTUMTOMOGRAPHY Herewebrieflyreviewthegeneralquantumtomographyapproachforasinglesystem,bydetailingthree relevantcases(optical[13],spin[11]andphoton-numbertomography[14])andthenextendtheformalism tomultipartitesystems. ThebasicingredientsofanytomographicschemeareaHilbertspaceHassociatedwithspaceofthesys- temunderconsiderationandapairofmeasurablesets(X,Λ)withmeasuresµ(x)andν(λ)correspondingly. Moreprecisely,thesetofsystemstatesisthesetS(H)ofHermitiannon-negativetrace-classoperatorson H with trace 1. Usually the set X is the spectrum of an observable of the system and the set Λ plays the roleoftransformations. We use the notation P(X) for the set of probability distributions on X, i.e. the set of nonnegative measurablefunctionsp : X → Rnormalizedtooneinthefollowingsense(cid:82) p(x)dµ(x) = 1. Both sets S(H) and P(X) are closed with respect to the convex combinations: if (cid:37)ˆ,σˆ ∈ S(H) (resp. p(x),q(x) ∈ P(X))anda ∈ [0,1]then a(cid:37)ˆ+(1−a)σˆ ∈ S(H) (resp. ap(x)+(1−a)q(x) ∈ P(X)). 3 Definition1 A map T : S(H) → RX×Λ is called tomographic map if the following three conditions are satisfied: 1. for any (cid:37)ˆ ∈ S(H) the image T((cid:37)ˆ) : X × Λ → R restricted on the set X × {λ} is a probability densityonX T ((cid:37)ˆ) ∈ P(X) ∀λ ∈ Λ, where T ((cid:37)ˆ) = T((cid:37)ˆ)| : X → R. λ λ X×{λ} 2. themapT preservesconvexcombinations T(a(cid:37)ˆ+(1−a)σˆ) = aT((cid:37)ˆ)+(1−a)T(σˆ), ∀(cid:37)ˆ,σˆ ∈ S(H),a ∈ [0,1]. 3. themapT isone-to-one T((cid:37)ˆ) = T(σˆ) ⇔ (cid:37)ˆ= σˆ. These conditions have simple meaning: (i) means that the tomogram T((cid:37)ˆ) of any state (cid:37)ˆis a probability distributiononX parameterizedbythepointsofΛ,(ii)isthelinearitycondition,and(iii)requiresthatthe tomogramofeachstatebeunique,or,inotherwords,thatanystatecanbeunambiguousreconstructedfrom itstomogram. Inthepresentworkwedealwithtomographicmapsofthefollowingform (cid:16) (cid:17) T((cid:37)ˆ)(x,λ) ≡ p (x,λ) = Tr (cid:37)ˆUˆ(x,λ) , (1) (cid:37)ˆ where Uˆ(x,λ) is a family of operators on H parameterized by points (x,λ) of the set X × Λ. In the examples considered below the state (cid:37)ˆcan be reconstructed from its tomogram p (x,λ) according to the (cid:37)ˆ formula (cid:90) (cid:90) (cid:37)ˆ= p(x,λ)Dˆ(x,λ)dµ(x)dν(λ), (2) X×Λ fortheappropriate(x,λ)-parameterizedfamilyofoperatorsDˆ(x,λ)onH. The set X is the spectrum of an observable Oˆ and the set Λ is a group equipped with a representation (ingeneralprojective)π : Λ → HinH. TheoperatorsUˆ(x,λ)havethefollowingform Uˆ(x,λ) = π(λ)|x(cid:105)(cid:104)x|π†(λ), (3) where |x(cid:105) is an eigenstate of the observable Oˆ. For a group theoretical approach to quantum tomography see[15]. Seealso[16]forarelationtogrupoids. 4 A. Spintomography Letusconsiderasystemwithspinj. Inthiscasewehave: H = C2j+1,X = {−j,−j+1,...,j−1,j} and Λ = SO(3,R). We denote the elements of the sets X and Λ as s and Ω respectively. The measure on X is equal to one on each element, so the corresponding integral is simply the finite sum over 2j +1 terms. The measure on SO(3,R) is Haar’s one. For the group SO(3,R), parameterized with Euler angles Ω ≡ (ϕ,ψ,θ)themeasureν(Ω)readsν(Ω) ≡ ν(ϕ,ψ,θ) = sinψdϕdψdθandtheoperatorUˆ of(3)takes theform Uˆ(s,Ω) = Kˆ(Ω)|j,s(cid:105)(cid:104)j,s|Kˆ†(Ω). (4) Here the vectors |j,s(cid:105), s = −j,−j +1,...,j −1,j are the basis of the space C2j+1 (eigenvectors of the spin projection sˆ ) and the operators Kˆ(Ω) are the operators of the irreducible representation of SO(3,R) z inC2j+1. Theirmatrixelementsaregivenby (cid:115) (j +s(cid:48))!(j −s(cid:48))! (cid:104)j,s|Kˆ(Ω)|j,s(cid:48)(cid:105) = ei(sθ+s(cid:48)ϕ) (j +s)!(j −s)! × coss+s(cid:48)(ψ/2)sins(cid:48)−s(ψ/2)P(s(cid:48)−s,s(cid:48)+s)(cosψ), (5) j−s(cid:48) (α,β) withP (x)theJacobipolynomials. n Thenthetomogramp(s,Ω) ≡ p(s,ϕ,ψ,θ)of(1)is p(s,Ω) = (cid:104)j,s|Kˆ(Ω)(cid:37)ˆKˆ†(Ω)|j,s(cid:105). (6) Due to the property (cid:104)j,s|Kˆ(Ω)|j,s(cid:48)(cid:105) = (−1)s(cid:48)−s(cid:104)j,−s|Kˆ(Ω)|j,−s(cid:48)(cid:105), the tomogram does not depend on theangleθ,i.e. p(s,ϕ,ψ,θ) ≡ p(s,ϕ,ψ). Finally,theoperatorDˆ of(2)results j (cid:88) Dˆ(s,Ω) = (cid:104)j,n|Dˆ(s,Ω)|j,m(cid:105)|j,n(cid:105)(cid:104)j,m|, n,m=−j wherethematrixelements(cid:104)j,n|Dˆ(s,Ω)|j,m(cid:105)aregivenbythefollowingexpression (−1)s+m (cid:88)2j (cid:104)j,n|Dˆ(s,Ω)|j,m(cid:105) = (2j +1)2 8π2 3 j3=0 × (cid:88)j3 (cid:104)j,k|Kˆ(Ω)|j,0(cid:105) j j j3 j j j3 , (7) n −m k s −s k k=−j3 intermsofWigner3j-symbols. 5 B. Opticaltomography Here we have : H = L (R), X = R and Λ = {eiθ|θ ∈ [0,2π]}. The measures on X and Λ are 2 Lebegue’sones. TheoperatorcorrespondingtoEq.(3)reads Uˆ(X,θ) = Rˆ(θ)|X(cid:105)(cid:104)X|Rˆ†(θ), (8) whereRˆ(θ)istherotationoperator (cid:18) (cid:19) θ Rˆ(θ) = exp i (xˆ2+pˆ2) , 2 actingonandthecanonicalpositionxˆandmomentumpˆoperatorsas xˆ cosθ −sinθ xˆ Rˆ(θ) Rˆ†(θ) = . pˆ sinθ cosθ pˆ In other words, Uˆ(X,θ) of (8) is the projector on the rotated eigenvector |X(cid:105) of the position operator xˆ. Thetomogramp(X,θ)of(1)isthediagonalmatrixelement p(X,θ) = (cid:104)X|Rˆ(θ)(cid:37)ˆRˆ†(θ)|X(cid:105). (9) Furthermore,theoperatorDˆ of(2)results 1 (cid:90) (cid:16) (cid:17) Dˆ(X,θ) = |r|exp −ir(X −cosθxˆ−sinθpˆ) dr. 4π C. Photon-Numbertomography Here we have: H = L (R), X = Z = {0,1,...} and Λ = C. We denote the elements of the sets X 2 + andCasnandαrespectively. ThemeasureonX isequaltooneoneachelementandthemeasureonCis (1/π)d2α, where d2α = dReαdImα is the Lebegue’s measure on the real plane. Here, the operator Uˆ is theprojectorontothedisplacedFockstate Uˆ(n,α) = Dˆ(α)|n(cid:105)(cid:104)n|Dˆ†(α), (10) with (cid:20)α−α∗ α+α∗ (cid:21) D(α) ≡ exp √ xˆ−i √ pˆ . 2 2 From(1)thetomogramp(n,α)reads p(n,α) = (cid:104)n|Dˆ(α)(cid:37)ˆDˆ†(α)|n(cid:105). (11) Furthermore,theoperatorDˆ of(2)becomesinthiscase +∞ (cid:88) Dˆ(n,α) = 4(−1)n (−1)mDˆ(α)|m(cid:105)(cid:104)m|Dˆ†(α). m=0 6 D. Tomographyformulti-partitesystems Thegeneralizationformulti-partitesystemsisstraightforward. Definition2 Consider a n-partite system with the state space H⊗n and n tomographic schemes, one for each part with sets (X ,Λ ) and operators Uˆ (x ,λ ) and Dˆ (x ,λ ), k = 1,...,n. The tomographic k k k k k k k k schemeforthewholesystemisthenconstructedasthedirectproductoftheseschemes,byusing n n (cid:89) (cid:89) X ≡ X , Λ ≡ Λ , k k k=1 k=1 n n (cid:79) (cid:79) Uˆ(x,λ) ≡ Uˆ (x ,λ ), Dˆ(x,λ) ≡ Dˆ (x ,λ ), (12) k k k k k k k=1 k=1 where x ≡ (x ,...,x ), λ ≡ (λ ,...,λ ) and the measures µ(x), ν(λ) on X, Λ are direct products of 1 n 1 n µ (x ),...,µ (x )andν (λ ),...,ν (λ )respectively. Thetomogramp(x,λ)ofastate(cid:37)ˆ(generalizing 1 1 n n 1 1 n n (1))is (cid:16) (cid:17) p(x,λ) = Tr (cid:37)ˆUˆ(x,λ) . (13) (cid:82) Foranyλ ∈ ΛitisaprobabilitydistributiononX,thus p(x,λ)dµ(x) = 1. X Remark. Fromthedefinition(12)oftheoperatorUˆ(x,λ)itimmediatelyfollowsthatthetomogramp(x,λ) ofafactorizedstate (cid:37)ˆ= (cid:37)ˆ ⊗...⊗(cid:37)ˆ (14) 1 n isalsofactorized,i.e. p(x,λ) = p (x ,λ )...p (x ,λ ), (15) 1 1 1 n n n wherep (x ,λ )isthetomogramofthestate(cid:37)ˆ . Moregenerally,thetomogramofaseparablestate k k k k +∞ +∞ (cid:37)ˆ= (cid:88)a (cid:37)ˆ(i)⊗...(cid:37)ˆ(i), a (cid:62) 0, (cid:88)a = 1 (16) i 1 n i i i=0 i=0 isalsoseparableinthefollowingsense +∞ p(x,λ) = (cid:88)a p(i)(x ,λ )...p(i)(x ,λ ), (17) i 1 1 1 n n n i=0 (i) (i) wherep (x ,λ )isthetomogramofthestate(cid:37)ˆ . k k k k 7 III. BELLINEQUALITIESFORTOMOGRAMS Let us consider a n-partite system in tomographic representation, whith each subsystem supplied by a tomographic map T , k = 1,...,n. The tomogram p(x,λ) of a state (cid:37)ˆis a function of 2n arguments and k with respect to one half of them it is a probability distribution. We will show that in general it cannot be consideredasaclassicaljointprobability. Definition3 Foranyk = 1,...,nletY andZ betwomeasurablesetssuchthat k k (cid:91) (cid:92) X = Y Z , Y Z = ∅, k k k k k (cid:81) andforanyλ ∈ Λ letA (λ )beadichotomicrandomvariableonX = X suchthat k k k k k k (cid:16) (cid:17) P(A (λ ) = 1) = (cid:82) Tr (cid:37)ˆUˆ (x ,λ ) dµ (x ), k k Y k k k k k k (cid:16) (cid:17) P(A (λ ) = −1) = (cid:82) Tr (cid:37)ˆUˆ (x ,λ ) dµ (x ). (18) k k Z k k k k k k SymbolicallythevariablesA (λ )canbewrittenas k k 1 if x ∈ Y , k k A (λ ) = (19) k k −1 if x ∈ Z k k in the coordinate system deformed by the operator Uˆ (x ,λ ). The joint probability distribution of the k k k randomvariablesA (λ ),...,A (λ ),namely 1 1 n n p (λ ,...,λ ) = P(A (λ ) = ε ,...,A (λ ) = ε ), ε1,...,εn 1 n 1 1 1 n n n whereε = ±1,isgivenby k (cid:90) (cid:90) p (λ ,...,λ ) = ... p(x,λ)dx, (20) ε1,...,εn 1 n W1 Wn with Y if ε = 1, k k W = k Z if ε = −1. k k ThecorrelationfunctionofA (λ ),...,A (λ )results 1 1 n n (cid:10) (cid:11) E(λ ,...,λ ) ≡ A (λ )...A (λ ) 1 n 1 1 n n (cid:88) = p (λ ,...,λ )ε ...ε . (21) ε1,...,εn 1 n 1 n ε1,...,εn=±1 8 (1) (2) Definition4 Letusfixtwoparametersλ andλ fork = 1,...,nanddenote k k E(j ,...,j ) ≡ E(λ(j1),...,λ(jn)), j = 1,2. (22) 1 n 1 n k Since each index j can take 2 values independently on all the other indices, there are 2n correlation k functions(22). Thenwedefineby (cid:16) (cid:17) e ≡ E(j ,...,j ) ∈ R2n. (23) 1 n thevectorofthesecorrelationfunctionswithsomeorderofmulti-indices(j ,...,j ). 1 n It is convenient to enumerate the functions E(j ,...,j ). For this purpose we use the binary base with 1 n “digits”1and2insteadof0and1. Thismeansthatweusethefollowingone-to-onecorrespondence {1,...,2n} (cid:51) j ↔ (j ,...,j ), j = 1,2, 1 n k wherej and(j ,...,j )arerelatedtoeachotheraccordingto 1 n j = (j −1)2n−1+...+(j −1)2+j . (24) 1 n n Byvirtueofsuchanordering,thevectore(23)canbewrittenas (cid:16) (cid:17) (cid:16) (cid:17) e = E(1),...,E(2n) = E(1,...,1),...,E(2,...,2) ∈ R2n. (25) What region Ω ⊂ R2n fills the vector e of (25)? Due to the fact that each observable has only two n outcomes±1itfollowsthateachcorrelationfunction(22)isboundedbyonebyabsolutevalueand,so,the setΩ isasubsetof2n-dimensionalcube[−1,1]2n. n Supposethatitispossibletomodeltheresultofthemeasurementbyarandomvariable,A (j ),which k k cantaketwovalues±1. Weassumethattheserandomvariablescanbearbitrarycorrelated. Definition5 Letusdefineby (cid:16) (cid:17) p(i (1), ...,i (2)) ≡ P A (1) = i (1),...,A (2) = i (2) , (26) 1 n 1 1 n n the joint probability distribution for random variables A (j ), with i (j ) = ±1. Since each index i (j ) k k k k k k cantakeindependently2valueswehave22n numbers(26)whichcompletelydescribestatisticalcharacter- isticsoftherandomvariablesunderconsideration. Weenumeratethemwithasinglenumberi = 1,...,22n usingthesameruleasforthecorrelationfunctionsE(j),namely {1,...,22n} (cid:51) i ↔ (i (1),...,i (2)), 1 n 9 whereiand(i (1),...,i (2))arerelatedtoeachotheraccordingto 1 n i = (i (1)−1)22n−1+(i (1)−1)2+i (2). (27) 1 n n Enumeratedinsuchawaytheprobabilities(26)forma22n-dimensionalvector p ≡ (p ,...,p ) ∈ R22n. (28) 1 22n Thepoint(28)liesinthestandardsimplex (cid:12) 22n S22n−1 = (p1,...,p22n) (cid:12)(cid:12) (cid:88)pi = 1,pi (cid:62) 0 ⊂ R22n. (29) (cid:12) i=1 What region Ω ⊂ R2n fills the vector e (25) when the point p (28) runs over the simplex S n 22n−1 (29)? Toanswerthisquestionwearegoingtoexplicitlyrelateeandpassumingtheformerexpressedlike classicaljointprobabilities. Then,thecorrelationfunctionE(j)isintendedasasimplelinearcombination ofp withpropercoefficients. Lookingat(21)weconsidersuchcoefficients,E(j,i),givenbytheproduct i E(j,i) = i (j )...i (j ), (30) 1 1 n n where j and i (j ) are “digits” of the numbers j and i in the binary representations (24) and (27). The k k k numbersE(j,i),j = 1,...,2n,i = 1,...,22n forma2n×22n matrixE andtherelationbetweeneandp n canthenbewrittenas e = E p. (31) n WeseethattheregionΩ istheimageofthestandardsimplexS n 22n−1 Ω = E (S ), (32) n n 22n−1 where we do not distinguish the linear map E : R22n → R2n and its matrix E in the standard bases of n n R22n andR2n. Thus, we have reduced the problem of finding Bell inequalities to find the set Ω . It means that the n problem of finding Bell inequalities boils down to a standard problem of convex geometry, referred to as convex hull problem: given points c find their convex hull, or facets of maximal dimension of the i correspondingpolytope(fornotionsofconvexgeometrysee,e.g. [17]). NowwewillgettheBellinequalitiesexplicitly. NotethatpermutationsofthecolumnsofthematrixE n do not change their convex hull and that they correspond to permutations of the components of the vector pordifferentorderingsoftheprobabilities(28),soonecansafelypermutecolumnsofE withoutaltering n (31). 10 Theorem1 ThesetΩ isspecifiedbythe(Bell)inequalitiesforthevectorofthecorrelationfunctions n (e,H c) (cid:54) 2n, ∀c = (±1,...,±1). (33) 2n ThematrixH istheHadamardmatrixrecurrentlydefinedas 2n 1 1 H2n = H2⊗...⊗H2, H2 = . (cid:124) (cid:123)(cid:122) (cid:125) 1 −1 n Proof. ThekeyfactinderivingtheBellinequality(33)isthatthematrixE canbewritteninthefollowing n blockform (cid:16) (cid:17) En = H2n −H2n ... H2n −H2n (34) (cid:124) (cid:123)(cid:122) (cid:125) 2n after appropriate arrangement of its columns. One can rewrite the r.h.s. of (34) as the product of two matrices (cid:16) (cid:17) En = H2n E2n −E2n ... E2n −E2n = H2nAn, whichmeansthatthelinearmapE : R22n → R2n canbedecomposedintotwomaps n E = H ◦A , A : R22n → R2n, H : R2n → R2n. n 2n n n 2n Accordingtothisdecomposition(31)reads e = H q, (35) 2n wherethevectorq = A p ∈ R2n isexplicitlygivenbythefollowingexpression n p −p +...−p 1 2n+1 (2n−1)2n+1 . q = .. . (36) p −p +...−p 2n 2·2n 22n DefinethefollowingconvexpolytopeO ⊂ RN N O = {x ∈ RN|(x,c) (cid:54) 1, ∀c = (±1,...,±1)}. (37) N As one can easily see the image of the standard simplex S is exactly the polytope O , that is 22n−1 2n A (S ) = O . Fromthisfactwehave n 22n−1 2n Ω = H (O ). (38) n 2n 2n