ebook img

Quantum theory of conducting matter: Newtonian equations of motion for a Bloch electron PDF

223 Pages·2007·2.243 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum theory of conducting matter: Newtonian equations of motion for a Bloch electron

Quantum Theory of Conducting Matter Shigeji Fujita and Kei Ito Quantum Theory of Conducting Matter Newtonian Equations of Motion for a Bloch Electron ShigejiFujita DepartmentofPhysics UniversityatBuffalo TheStateUniversityofNewYork Buffalo,NY14260 [email protected] KeiIto ResearchDivision TheNationalCenterforUniversityEntranceExaminations 2-19-23Komaba,Meguro Tokyo153-8501 Japan [email protected] LibraryofCongressControlNumber:2007932415 ISBN978-0-387-74102-4 e-ISBN978-0-387-74103-1 Printedonacid-freepaper. (cid:2)c 2007SpringerScience+BusinessMedia,LLC Allrightsreserved. Thisworkmaynotbetranslated orcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY 10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarksandsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. 9 8 7 6 5 4 3 2 1 springer.com Preface The measurements of the Hall coefficient R and the Seebeck coefficient H (thermopower) S are known to give the sign of the carrier charge q. Sodium (Na) forms a body-centered cubic (BCC) lattice, where both R and S are H negative, indicating that the carrier is the “electron.” Silver (Ag) forms a face-centered cubic (FCC) lattice, where the Hall coefficient R is negative H but the Seebeck coefficient S is positive. This complication arises from the Fermi surface of the metal. The “electrons” and the “holes” play important rolesinconductingmatterphysics. The“electron”(“hole”), whichbydefini- tion circulates counterclockwise (clockwise) around the magnetic field (flux) vector B cannot be discussed based on the prevailing equation of motion in the electron dynamics: (cid:2)dk/dt = q(E + v × B), where k = k-vector, E = electric field, and v = velocity. The energy-momentum relation is not incorporated in this equation. In this book we shall derive Newtonian equations of motion with a sym- metric mass tensor. We diagonalize this tensor by introducing the principal masses and the principal axes of the inverse-mass tensor associated with the Fermi surface. Using these equations, we demonstrate that the “electrons” (“holes”) are generated, depending on the curvature sign of the Fermi sur- face. The complicated Fermi surface of Ag can generate “electrons” and “holes,” and it is responsible for the observed negative Hall coefficient R H and positive Seebeck coefficient S. When the Fermi surface is nonspher- ical, the conduction electron moves anisotropically with different effective masses (m , m , m ). The magnetic oscillations in the susceptibility χ and 1 2 3 the magnetoresistance arise from the oscillatory density of states assocated with the Landau states upon the application of a magnetic field. The most direct probe of the Fermi surface can be made by observing the cyclotron resonance. A magnetic field is applied to a pure sample at liquid helium temperatures. The sign of the charge carrier can be determined by using the circularly polarized lasers. The data are analyzed in terms of Shockley’s v vi Preface formulaoritssimplifiedversion. Mostoften,theintrinsiceffectivemassesfor a semiconductor or metal can be determined directly after simple analyses. Inthepresentvolume,wemainlydealwiththebehaviorsofthefermionic conduction electrons. In the companion volume, called book2 in the text, superconductivity and quantum Hall effect are treated. The charge carri- ers in the supercurrent are the Cooper pairs, each composed of a pair of electrons bound by the phonon exchange attraction. The statistics of a com- posite particle with respect to the center-of-mass motion follows Ehrenfest– Oppenheimer–Bethe’s rule: a composite moves as a fermion (boson) if it contains an odd (even) number of elementary fermions. Accordingly the Cooper pair moves as a boson since the pair contains two electrons. The different statistics generate very different behavior. The quantum Hall effect arises from the supercurrent generated in a two-dimensional system subject to a magnetic field. The text is composed of three parts: preliminaries, Bloch electron dy- namics, and applications (fermionic systems). Part I, Chapters 1 through 6, startswithanintroductionandthendealswiththephonons(quantaoflattice vibrations), the free-electron model, the kinetic theory of electron transport, the magnetic susceptibility, and the Boltzmann equation method. These materials are normally covered in introductory solid-state physics courses; however, they are prerequisite to the theoretical developments in Part II, Chapters 7 through 10. The Bloch theorem, the self-consistent mean field theory, the Fermi surface, the Bloch electron (wave packet) dynamics with Newtonian equations of motion are discussed in Part II. In Part III, Chap- ters 11 through 15, a selection of applications for fermionic systems (mostly electrons) are discussed: the de Haas–van Alphen oscillations in suscepti- bility, the Shubnikov–de Haas oscillations in magnetoresistance, the angle- dependentcyclotron resonance, the Seebeck coefficient arising from the ther- mal diffusion, and the infrared-laser Faraday rotation. The present book is written for first-year graduate students in physics, chemistry, electrical engineering, and material sciences. Dynamics, quantum mechanics, thermodynamics, statistical mechanics, electromagnetism, and solid-state physics at the undergraduate level are prerequisite. The authors believe that the students should learn physics, starting from the bottom up and following all theoretical developments with step-by-step calculations. We have included many problems, most of them elementary excercises in the text. The students learn key concepts more firmly by working out these problems. Preface vii The prevalent equations of motion for the electron in a crystal is chal- lengedinthisbook,butallargumentsleadingtothenewequationsofmotion are based on the principles of quantum statistical mechanics (Heisenberg uncertainty and Pauli exclusion principles). Condensed matter physicists, chemists, and material scientists, theoretical and experimental, are invited to examine this text. Theauthorsthankthefollowingindivisualsforvaluablecriticisms,discus- sions, and readings: Professor M. de Llano, Universidad Nacional Auto´noma deMexico; ProfessorT.Obata, GunmaNationalCollegeofTechnology, Pro- fessor Robert Kohler, Buffalo State University; and Dr. Hung-Chuk Ho, Notre Dame University. They also thank Sachiko, Michio, Isao, Yoshiko, Eriko, George Redden, Karen Roth, and Kurt Borchardt for their encour- agement and reading of the drafts. Shigeji Fujita, Buffalo, New York, USA and Kei Ito, Tokyo, Japan August 2007 Contents Preface v Constants, Signs, Symbols, and General Remarks xiii I Preliminaries 1 1 Introduction 3 1.1 Crystal Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Metals and Conduction Electrons . . . . . . . . . . . . 5 1.2.2 Quantum Mechanics . . . . . . . . . . . . . . . . . . . 6 1.2.3 Heisenberg Uncertainty Principle . . . . . . . . . . . . 6 1.2.4 Bosons and Fermions . . . . . . . . . . . . . . . . . . . 7 1.2.5 Fermi and Bose Distribution Functions . . . . . . . . . 7 1.2.6 Composite Particles. . . . . . . . . . . . . . . . . . . . 7 1.2.7 Quasifree Electron Model . . . . . . . . . . . . . . . . 8 1.2.8 “Electrons” and “Holes” . . . . . . . . . . . . . . . . . 8 2 Lattice Vibrations and Heat Capacity 11 2.1 Einstein’s Theory of Heat Capacity . . . . . . . . . . . . . . . 11 2.2 Debye’s Theory of Heat Capacity . . . . . . . . . . . . . . . . 15 3 Free Electrons and Heat Capacity 25 3.1 Free Electrons and the Fermi Energy . . . . . . . . . . . . . . 25 3.2 Density of States . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Qualitative Discussions . . . . . . . . . . . . . . . . . . . . . . 36 3.4 Quantitative Calculations . . . . . . . . . . . . . . . . . . . . 38 ix x Contents 4 Electric Conduction and the Hall Effect 43 4.1 Ohm’s Law and Matthiessen’s Rule . . . . . . . . . . . . . . . 43 4.2 Motion of a Charged Particle in Electromagnetic Fields . . . . . . . . . . . . . . . . . . . . . 46 4.3 The Landau States and Levels . . . . . . . . . . . . . . . . . . 48 4.4 The Degeneracy of the Landau Levels . . . . . . . . . . . . . . 51 4.5 The Hall Effect: “Electrons” and “Holes” . . . . . . . . . . . . 56 5 Magnetic Susceptibility 61 5.1 The Magnetogyric Ratio . . . . . . . . . . . . . . . . . . . . . 61 5.2 Pauli Paramagnetism . . . . . . . . . . . . . . . . . . . . . . . 64 5.3 Landau Diamagnetism . . . . . . . . . . . . . . . . . . . . . . 67 6 Boltzmann Equation Method 75 6.1 The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . 75 6.2 The Current Relaxation Rate . . . . . . . . . . . . . . . . . . 78 II Bloch Electron Dynamics 83 7 Bloch Theorem 85 7.1 The Bloch Theorem . . . . . . . . . . . . . . . . . . . . . . . . 85 7.2 The Kronig–Penney Model . . . . . . . . . . . . . . . . . . . . 91 8 The Fermi Liquid Model 97 8.1 The Self-consistent Field Approximation . . . . . . . . . . . . 97 8.2 Fermi Liquid Model . . . . . . . . . . . . . . . . . . . . . . . . 99 9 The Fermi Surface 103 9.1 Monovalent Metals (Na, Cu) . . . . . . . . . . . . . . . . . . . 103 9.2 Multivalent Metals . . . . . . . . . . . . . . . . . . . . . . . . 107 9.3 Electronic Heat Capacity and Density of States . . . . . . . . 111 10 Bloch Electron Dynamics 115 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 10.2 Newtonian Equations of Motion . . . . . . . . . . . . . . . . . 117 10.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Contents xi III Applications. Fermionic Systems (Electrons) 131 11 De Haas–Van Alphen Oscillations 133 11.1 Onsager’s Formula . . . . . . . . . . . . . . . . . . . . . . . . 133 11.2 Statistical Mechanical Calculations: 3D . . . . . . . . . . . . . 139 11.3 Statistical Mechanical Calculations: 2D . . . . . . . . . . . . . 142 11.4 Two-Dimensional Conductors . . . . . . . . . . . . . . . . . . 147 12 Magnetoresistance 151 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 12.2 Anisotropic Magnetoresistance in Cu . . . . . . . . . . . . . . 153 12.3 Shubnikov–De Haas Oscillations . . . . . . . . . . . . . . . . . 155 12.4 Heterojunction GaAs/AlGaAs . . . . . . . . . . . . . . . . . . 161 13 Cyclotron Resonance 171 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 13.2 Cyclotron Resonance in Ge and Si . . . . . . . . . . . . . . . . 172 13.3 Cyclotron Resonance in Al . . . . . . . . . . . . . . . . . . . . 184 13.4 Cyclotron Resonance in Pb. . . . . . . . . . . . . . . . . . . . 188 13.5 Cyclotron Resonance in Zn and Cd (HCP) . . . . . . . . . . . 192 14 Seebeck Coefficient (Thermopower) 195 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 14.2 Quantum Theory . . . . . . . . . . . . . . . . . . . . . . . . . 197 14.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 15 Infrared Hall Effect 205 15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 15.2 Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 209 15.2.1 Conductivity . . . . . . . . . . . . . . . . . . . . . . . 209 15.2.2 Hall Coefficient . . . . . . . . . . . . . . . . . . . . . . 209 15.2.3 Hall Angle . . . . . . . . . . . . . . . . . . . . . . . . . 210 15.2.4 Dynamic Coefficients . . . . . . . . . . . . . . . . . . . 210 15.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Appendix A: Electromagnetic Potentials 217

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.