ebook img

Quantum Systems, Channels, Information PDF

359 Pages·2019·5.588 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Systems, Channels, Information

AlexanderS.Holevo QuantumSystems,Channels,Information Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM Texts and Monographs in Theoretical Physics | Edited by Michael Efroimsky, Bethesda, Maryland, USA Leonard Gamberg, Reading, Pennsylvania, USA Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM Alexander S. Holevo Quantum Systems, Channels, Information | A Mathematical Introduction 2nd edition Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM PhysicsandAstronomyClassification2010 03.67.-a,05.30.-d,02.30.Tb,02.50.-r Author Prof.Dr.AlexanderS.Holevo RussianAcademyofSciences SteklovMathematicalInstitute DepartmentofProbabilityTheoryand MathematicalStatistics Gubkinastr.8 Moscow119991 Russia [email protected] ISBN978-3-11-064224-7 e-ISBN(PDF)978-3-11-064249-0 e-ISBN(EPUB)978-3-11-064240-7 ISSN2627-3934 LibraryofCongressControlNumber:2019938956 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2019WalterdeGruyterGmbH,Berlin/Boston Coverimage:Curtis,Kevin/SciencePhotoLibrary Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM Preface Quantuminformationtheorystudiesthegenerallawsoftransfer,storage,andpro- cessing of information in systems obeying the laws of quantum mechanics. It took shapeasaself-consistentareaofresearchinthe1990s,whileitsorigincanbetraced backtothe1950–1960s,whichwaswhenthebasicideasofreliabledatatransmission andofShannon’sinformationtheoryweredeveloped.Atthefirststage,whichcov- erstheperiod1960–1980,themainissueconsistedofthefundamentalrestrictionson thepossibilitiesofinformationtransferandprocessingcausedbythequantumme- chanicalnatureofitscarrier.Moderntechnologicaldevelopments,relyinguponthe achievementsofquantumelectronicsandquantumoptics,suggestthatintheforesee- ablefuturesuchrestrictionswillbecomethemainobstaclelimitingfurtherextrapo- lationofexistingtechnologiesandprinciplesofinformationprocessing. Theemergence,inthe1980–1990s,oftheideasofquantumcomputing,quantum cryptography,andthenewcommunicationprotocols,ontheotherhand,alloweddis- cussingnotonlytherestrictions,butalsothenewpossibilitiescreatedbytheuseof specificquantumresources,suchasquantumentanglement,quantumcomplemen- tarity,andquantumparallelism.Quantuminformationtheoryprovidesthecluetoun- derstandingthesefundamentalissuesandstimulatesthedevelopmentofexperimen- talphysics,withpotentialimportancetonew,effectiveapplications.Atpresent,inves- tigationsintheareaofquantuminformationscience,includinginformationtheory,its experimentalaspects,andtechnologicaldevelopments,areongoinginadvancedre- searchcentersthroughouttheworld. The mathematical toolbox of “classical” information theory contains methods basedonprobabilitytheory,combinatorics,andmodernalgebra,includingalgebraic geometry. For a mathematician sensible to the impact of his research on the natu- ralsciences,informationtheorycanbeasourceofdeepideasandnew,challenging problems, with sound motivation and applications. This equally, if not to a greater extent, applies to quantum information theory, the scope of which turns out to be closely connected to multilinear algebra and noncommutative analysis, convexity, andasymptotictheoryoffinite-dimensionalnormedspaces,subtleaspectsofposi- tivityandtensorproductsinoperatoralgebras,andthemethodsofrandommatrices. Nowadays,theintimateconnectionstooperatorspacesandso-called“quantumfunc- tionalanalysis”havebeenrevealedandexplored. In2002,theMoscowIndependentUniversitypublishedtheauthor’slecturenotes (inRussian),inwhichanattemptwasmadeatamathematician’sintroductiontoprob- lemsofquantuminformationtheory.In2010,asubstantiallyexpandedtextwaspub- lishedwiththetitle“Quantumsystems,channels,information.”Theauthor’sinten- tionwastoprovideawidelyaccessibleandself-containedintroductiontothesubject, startingfromprimarystructuresandleadinguptonontrivialresultswithratherde- https://doi.org/10.1515/9783110642490-201 Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM VI | Preface tailedproofs,aswellastosomeopenproblems.ThepresentEnglishtextisafurther stepinthatdirection,extendingandimprovingtheRussianversionof2010. The exposition is organized in concentric circles, the Nth round consisting of PartsItoN,whereeachcircleisself-contained.Thereadercanrestricthimselftoany ofthesecircles,dependingonthedepthofpresentationthatheorshedemands.In particular,inPartItoPartIV,weconsiderfinite-dimensionalsystemsandchannels, whereastheinfinite-dimensionalcaseistreatedinthefinalPartV. PartIstartswithadescriptionofthestatisticalstructureofquantumtheory.After introducingthenecessarymathematicalprerequisitesinChapter1,thecentralfocus inChapters2,3isondiscussingthekeyfeaturesofquantumcomplementarity and entanglement.Theformerisreflectedbythenoncommutativityofthealgebraofob- servablesofthesystem,whilethelatterisreflectedbythetensorproductstructure ofcompositequantumsystems.Chapter3alsocontainsthefirstapplicationsofthe information-theoreticapproachtoquantumsystems. Ininformationtheory,thenotionsofachannelanditscapacity,givingameasure ofultimateinformation-processingperformanceofthechannel,playacentralrole.In Chapter4ofPartII,areviewofthebasicconceptsandnecessaryresultsfromclassical informationtheoryisprovided,thequantumanalogsofwhicharethemainsubjectof thefollowingchapters.Theconceptsofrandomcodingandtypicalityareintroduced andthenextendedtothequantumcaseinChapter5.Thatchaptercontainsdirectand self-consistentproofsofthequantuminformationboundandoftheprimarycoding theoremsfortheclassical-quantumchannels,whichwilllaterserveasabasisforthe moreadvancedcapacityresultsinChapter8. PartIIIisdevotedtothestudyofquantumchannelsandtheirentropycharacteris- tics.InChapter6,wediscussthegeneralconceptandstructureofaquantumchannel, withthehelpofavarietyofexamples.Fromthepointofviewofoperatoralgebras, thesearenormalizedcompletelypositivemaps,theanalogofMarkovmapsinnon- commutativeprobabilitytheory,andtheyplaytheroleofmorphismsinthecategory ofquantumsystems.Fromthepointofviewofstatisticalmechanics,achannelgives anoveralldescriptionoftheevolutionofanopenquantumsysteminteractingwith anenvironment–aphysicalcounterpartofthemathematicaldilationtheorem.Vari- ousentropicquantitiesessentialtothecharacterizationoftheinformation-processing performance,aswellastheirreversibilityofthechannel,areinvestigatedinChapter7. PartIVisdevotedtotheproofsofadvancedcodingtheorems,whichgivethemain capacitiesofaquantumchannel.Remarkably,inthequantumcase,thenotionofthe channelcapacitysplits,givingawholespectrumofinformation-processingcharac- teristics,dependingonthekindofdatatransmitted(classicalorquantum),aswell asontheadditionalcommunicationresources.InChapter8,wediscusstheclassical capacityofaquantumchannel,i.e.,thecapacityfortransmittingclassicaldata.We touchuponthetremendousprogressmaderecentlyinthesolutionoftherelatedaddi- tivityproblemandpointouttheremainingquestions.Chapter9isdevotedtotheclas- sicalentanglement-assistedcapacityanditscomparisonwithunassistedcapacity.In Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM Preface | VII Chapter10,weconsiderreliabletransmissionofquantuminformation(i.e.,quantum states),whichturnsouttobecloselyrelatedtotheprivatetransmissionofclassical information.Thecorrespondingcodingtheoremsprovidethequantumcapacityand theprivateclassicalcapacityofaquantumchannel. InPartV,wepassfromfinite-dimensionaltoseparableHilbertspace.Chapter11 dealswiththenewobstaclescharacteristicforinfinite-dimensionalchannels–singu- larbehavioroftheentropy(infinitevalues,discontinuity)andtheemergenceofthe inputchannelconstraints(e.g.,finitenessofthesignalenergy)andofthecontinuous optimizingstateensembles.Chapter12treatsthebosonicGaussiansystemsandchan- nelsonthecanonicalcommutationrelations(manyexperimentaldemonstrationsof quantum information processing were realized in such “continuous-variables” sys- tems,basedinparticularontheprinciplesofquantumoptics).Weassumethereader hassomeminorbackgroundinthefieldandstartwitharatherextendedintroduc- tionatthebeginningofChapter12.Next,wedescribeandstudyindetailtheGaus- sianstatesandchannels.Themainmathematicalproblemsherearethestructureof themultimodequantumGaussianchannelsandthecomputationofthevariousen- tropicquantitiescharacterizingtheirperformance.Whiletheclassicalentanglement- assisted capacity is, in principle, computable for a general Gaussian channel, the quantumcapacityisfoundonlyforrestrictedclassesofchannels,andtheunassisted classical capacity in general presents an open analytical problem, namely, that of verifyingtheconjectureof“quantumGaussianoptimizers,”whichiscomparablein complexitytotheadditivityproblem(alsoopenfortheclassofGaussianchannels) andappearstobecloselyrelatedtoit. Thisbookdoesnotintendtobeanall-embracingtextinquantuminformation theoryanditscontentdefinitelyreflectstheauthor’spersonalresearchinterestsand preferences. For example, the important topics of entanglement quantification and errorcorrectionarementionedonlybriefly.Aninterestedreadercanfindanaccount oftheseinothersources,listedinthenotesandreferencestotheindividualchapters. Quantum information theory is in a stage of fast development and new, important resultscontinuetoappear.Yet,wehopethepresenttextwillbeausefuladditiontothe existingliterature,particularlyformathematicallyinclinedreaderseagertopenetrate thefascinatingworldofquantuminformation. ThebasisfortheselecturenoteswasacoursetaughtbytheauthorattheMoscow InstituteofPhysicsandTechnology,MoscowStateUniversity,andseveralWesternin- stitutions.Theauthoracknowledgesstimulatingdiscussions,collaborations,andin- valuablesupportofR.Ahlswede,A.Barchielli,C.H.Bennett,G.M.D’Ariano,C.Fuchs, V.Giovannetti,O.Hirota,R.Jozsa,L.Lanz,O.Melsheimer,H.Neumann,M.B.Ruskai, P.W.Shor,Yu.M.Suhov,K.A.Valiev,R.Werner,A.Winter,andM.Wolf. IextendspecialthankstomycolleaguesMaximShirokovandAndreyBulinsky fortheircarefulreadingofthemanuscriptandthesuggestionsfornumerousimprove- ments. Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM VIII | Preface ThisworkwassupportedbytheRussianFoundationforBasicResearch,Funda- mentalResearchProgramsoftheRussianAcademyofSciences,andtheCariploFel- lowshiporganizedbytheLandauNetwork–CentroVolta. Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM Preface to the Second Edition A major change in the second edition of the book is Chapter 12. The new version includes a solution of the long-standing problem of quantum Gaussian optimizers, whichappearedsoonafterpublicationofthefirstedition.Thisresultenablesoneto explicitly compute the classical capacity for the most usable mathematical models of quantum communication channels in continuous-variables systems, making the wholecontentofthebookmorecomplete. InChapters1–11severaltextualamendmentsweremade.Circathirtynewrefer- enceswereaddedwhicharestrictlyrelevanttothemaincontentofthemonograph. TheauthorisgratefultoMaximShirokov,whosecarefulreadingandcommentscon- tributedsubstantiallytotheimprovementofthepresentation. https://doi.org/10.1515/9783110642490-202 Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.