AlexanderS.Holevo QuantumSystems,Channels,Information Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM Texts and Monographs in Theoretical Physics | Edited by Michael Efroimsky, Bethesda, Maryland, USA Leonard Gamberg, Reading, Pennsylvania, USA Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM Alexander S. Holevo Quantum Systems, Channels, Information | A Mathematical Introduction 2nd edition Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM PhysicsandAstronomyClassification2010 03.67.-a,05.30.-d,02.30.Tb,02.50.-r Author Prof.Dr.AlexanderS.Holevo RussianAcademyofSciences SteklovMathematicalInstitute DepartmentofProbabilityTheoryand MathematicalStatistics Gubkinastr.8 Moscow119991 Russia [email protected] ISBN978-3-11-064224-7 e-ISBN(PDF)978-3-11-064249-0 e-ISBN(EPUB)978-3-11-064240-7 ISSN2627-3934 LibraryofCongressControlNumber:2019938956 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2019WalterdeGruyterGmbH,Berlin/Boston Coverimage:Curtis,Kevin/SciencePhotoLibrary Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM Preface Quantuminformationtheorystudiesthegenerallawsoftransfer,storage,andpro- cessing of information in systems obeying the laws of quantum mechanics. It took shapeasaself-consistentareaofresearchinthe1990s,whileitsorigincanbetraced backtothe1950–1960s,whichwaswhenthebasicideasofreliabledatatransmission andofShannon’sinformationtheoryweredeveloped.Atthefirststage,whichcov- erstheperiod1960–1980,themainissueconsistedofthefundamentalrestrictionson thepossibilitiesofinformationtransferandprocessingcausedbythequantumme- chanicalnatureofitscarrier.Moderntechnologicaldevelopments,relyinguponthe achievementsofquantumelectronicsandquantumoptics,suggestthatintheforesee- ablefuturesuchrestrictionswillbecomethemainobstaclelimitingfurtherextrapo- lationofexistingtechnologiesandprinciplesofinformationprocessing. Theemergence,inthe1980–1990s,oftheideasofquantumcomputing,quantum cryptography,andthenewcommunicationprotocols,ontheotherhand,alloweddis- cussingnotonlytherestrictions,butalsothenewpossibilitiescreatedbytheuseof specificquantumresources,suchasquantumentanglement,quantumcomplemen- tarity,andquantumparallelism.Quantuminformationtheoryprovidesthecluetoun- derstandingthesefundamentalissuesandstimulatesthedevelopmentofexperimen- talphysics,withpotentialimportancetonew,effectiveapplications.Atpresent,inves- tigationsintheareaofquantuminformationscience,includinginformationtheory,its experimentalaspects,andtechnologicaldevelopments,areongoinginadvancedre- searchcentersthroughouttheworld. The mathematical toolbox of “classical” information theory contains methods basedonprobabilitytheory,combinatorics,andmodernalgebra,includingalgebraic geometry. For a mathematician sensible to the impact of his research on the natu- ralsciences,informationtheorycanbeasourceofdeepideasandnew,challenging problems, with sound motivation and applications. This equally, if not to a greater extent, applies to quantum information theory, the scope of which turns out to be closely connected to multilinear algebra and noncommutative analysis, convexity, andasymptotictheoryoffinite-dimensionalnormedspaces,subtleaspectsofposi- tivityandtensorproductsinoperatoralgebras,andthemethodsofrandommatrices. Nowadays,theintimateconnectionstooperatorspacesandso-called“quantumfunc- tionalanalysis”havebeenrevealedandexplored. In2002,theMoscowIndependentUniversitypublishedtheauthor’slecturenotes (inRussian),inwhichanattemptwasmadeatamathematician’sintroductiontoprob- lemsofquantuminformationtheory.In2010,asubstantiallyexpandedtextwaspub- lishedwiththetitle“Quantumsystems,channels,information.”Theauthor’sinten- tionwastoprovideawidelyaccessibleandself-containedintroductiontothesubject, startingfromprimarystructuresandleadinguptonontrivialresultswithratherde- https://doi.org/10.1515/9783110642490-201 Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM VI | Preface tailedproofs,aswellastosomeopenproblems.ThepresentEnglishtextisafurther stepinthatdirection,extendingandimprovingtheRussianversionof2010. The exposition is organized in concentric circles, the Nth round consisting of PartsItoN,whereeachcircleisself-contained.Thereadercanrestricthimselftoany ofthesecircles,dependingonthedepthofpresentationthatheorshedemands.In particular,inPartItoPartIV,weconsiderfinite-dimensionalsystemsandchannels, whereastheinfinite-dimensionalcaseistreatedinthefinalPartV. PartIstartswithadescriptionofthestatisticalstructureofquantumtheory.After introducingthenecessarymathematicalprerequisitesinChapter1,thecentralfocus inChapters2,3isondiscussingthekeyfeaturesofquantumcomplementarity and entanglement.Theformerisreflectedbythenoncommutativityofthealgebraofob- servablesofthesystem,whilethelatterisreflectedbythetensorproductstructure ofcompositequantumsystems.Chapter3alsocontainsthefirstapplicationsofthe information-theoreticapproachtoquantumsystems. Ininformationtheory,thenotionsofachannelanditscapacity,givingameasure ofultimateinformation-processingperformanceofthechannel,playacentralrole.In Chapter4ofPartII,areviewofthebasicconceptsandnecessaryresultsfromclassical informationtheoryisprovided,thequantumanalogsofwhicharethemainsubjectof thefollowingchapters.Theconceptsofrandomcodingandtypicalityareintroduced andthenextendedtothequantumcaseinChapter5.Thatchaptercontainsdirectand self-consistentproofsofthequantuminformationboundandoftheprimarycoding theoremsfortheclassical-quantumchannels,whichwilllaterserveasabasisforthe moreadvancedcapacityresultsinChapter8. PartIIIisdevotedtothestudyofquantumchannelsandtheirentropycharacteris- tics.InChapter6,wediscussthegeneralconceptandstructureofaquantumchannel, withthehelpofavarietyofexamples.Fromthepointofviewofoperatoralgebras, thesearenormalizedcompletelypositivemaps,theanalogofMarkovmapsinnon- commutativeprobabilitytheory,andtheyplaytheroleofmorphismsinthecategory ofquantumsystems.Fromthepointofviewofstatisticalmechanics,achannelgives anoveralldescriptionoftheevolutionofanopenquantumsysteminteractingwith anenvironment–aphysicalcounterpartofthemathematicaldilationtheorem.Vari- ousentropicquantitiesessentialtothecharacterizationoftheinformation-processing performance,aswellastheirreversibilityofthechannel,areinvestigatedinChapter7. PartIVisdevotedtotheproofsofadvancedcodingtheorems,whichgivethemain capacitiesofaquantumchannel.Remarkably,inthequantumcase,thenotionofthe channelcapacitysplits,givingawholespectrumofinformation-processingcharac- teristics,dependingonthekindofdatatransmitted(classicalorquantum),aswell asontheadditionalcommunicationresources.InChapter8,wediscusstheclassical capacityofaquantumchannel,i.e.,thecapacityfortransmittingclassicaldata.We touchuponthetremendousprogressmaderecentlyinthesolutionoftherelatedaddi- tivityproblemandpointouttheremainingquestions.Chapter9isdevotedtotheclas- sicalentanglement-assistedcapacityanditscomparisonwithunassistedcapacity.In Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM Preface | VII Chapter10,weconsiderreliabletransmissionofquantuminformation(i.e.,quantum states),whichturnsouttobecloselyrelatedtotheprivatetransmissionofclassical information.Thecorrespondingcodingtheoremsprovidethequantumcapacityand theprivateclassicalcapacityofaquantumchannel. InPartV,wepassfromfinite-dimensionaltoseparableHilbertspace.Chapter11 dealswiththenewobstaclescharacteristicforinfinite-dimensionalchannels–singu- larbehavioroftheentropy(infinitevalues,discontinuity)andtheemergenceofthe inputchannelconstraints(e.g.,finitenessofthesignalenergy)andofthecontinuous optimizingstateensembles.Chapter12treatsthebosonicGaussiansystemsandchan- nelsonthecanonicalcommutationrelations(manyexperimentaldemonstrationsof quantum information processing were realized in such “continuous-variables” sys- tems,basedinparticularontheprinciplesofquantumoptics).Weassumethereader hassomeminorbackgroundinthefieldandstartwitharatherextendedintroduc- tionatthebeginningofChapter12.Next,wedescribeandstudyindetailtheGaus- sianstatesandchannels.Themainmathematicalproblemsherearethestructureof themultimodequantumGaussianchannelsandthecomputationofthevariousen- tropicquantitiescharacterizingtheirperformance.Whiletheclassicalentanglement- assisted capacity is, in principle, computable for a general Gaussian channel, the quantumcapacityisfoundonlyforrestrictedclassesofchannels,andtheunassisted classical capacity in general presents an open analytical problem, namely, that of verifyingtheconjectureof“quantumGaussianoptimizers,”whichiscomparablein complexitytotheadditivityproblem(alsoopenfortheclassofGaussianchannels) andappearstobecloselyrelatedtoit. Thisbookdoesnotintendtobeanall-embracingtextinquantuminformation theoryanditscontentdefinitelyreflectstheauthor’spersonalresearchinterestsand preferences. For example, the important topics of entanglement quantification and errorcorrectionarementionedonlybriefly.Aninterestedreadercanfindanaccount oftheseinothersources,listedinthenotesandreferencestotheindividualchapters. Quantum information theory is in a stage of fast development and new, important resultscontinuetoappear.Yet,wehopethepresenttextwillbeausefuladditiontothe existingliterature,particularlyformathematicallyinclinedreaderseagertopenetrate thefascinatingworldofquantuminformation. ThebasisfortheselecturenoteswasacoursetaughtbytheauthorattheMoscow InstituteofPhysicsandTechnology,MoscowStateUniversity,andseveralWesternin- stitutions.Theauthoracknowledgesstimulatingdiscussions,collaborations,andin- valuablesupportofR.Ahlswede,A.Barchielli,C.H.Bennett,G.M.D’Ariano,C.Fuchs, V.Giovannetti,O.Hirota,R.Jozsa,L.Lanz,O.Melsheimer,H.Neumann,M.B.Ruskai, P.W.Shor,Yu.M.Suhov,K.A.Valiev,R.Werner,A.Winter,andM.Wolf. IextendspecialthankstomycolleaguesMaximShirokovandAndreyBulinsky fortheircarefulreadingofthemanuscriptandthesuggestionsfornumerousimprove- ments. Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM VIII | Preface ThisworkwassupportedbytheRussianFoundationforBasicResearch,Funda- mentalResearchProgramsoftheRussianAcademyofSciences,andtheCariploFel- lowshiporganizedbytheLandauNetwork–CentroVolta. Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM Preface to the Second Edition A major change in the second edition of the book is Chapter 12. The new version includes a solution of the long-standing problem of quantum Gaussian optimizers, whichappearedsoonafterpublicationofthefirstedition.Thisresultenablesoneto explicitly compute the classical capacity for the most usable mathematical models of quantum communication channels in continuous-variables systems, making the wholecontentofthebookmorecomplete. InChapters1–11severaltextualamendmentsweremade.Circathirtynewrefer- enceswereaddedwhicharestrictlyrelevanttothemaincontentofthemonograph. TheauthorisgratefultoMaximShirokov,whosecarefulreadingandcommentscon- tributedsubstantiallytotheimprovementofthepresentation. https://doi.org/10.1515/9783110642490-202 Brought to you by | provisional account Unauthenticated Download Date | 1/12/20 9:11 AM