ebook img

Quantum Superfield Supersymmetry PDF

160 Pages·2021·2.504 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Superfield Supersymmetry

Fundamental Theories of Physics 202 Albert Petrov Quantum Superfield Supersymmetry Fundamental Theories of Physics Volume 202 SeriesEditors HenkvanBeijeren,Utrecht,TheNetherlands PhilippeBlanchard,Bielefeld,Germany BobCoecke,Oxford,UK DennisDieks,Utrecht,TheNetherlands BiancaDittrich,Waterloo,ON,Canada DetlefDürr,Munich,Germany RuthDurrer,Geneva,Switzerland RomanFrigg,London,UK ChristopherFuchs,Boston,MA,USA DomenicoJ.W.Giulini,Hanover,Germany GreggJaeger,Boston,MA,USA ClausKiefer,Cologne,Germany NicolaasP.Landsman,Nijmegen,TheNetherlands ChristianMaes,Leuven,Belgium MioMurao,Tokyo,Japan HermannNicolai,Potsdam,Germany VesselinPetkov,Montreal,QC,Canada LauraRuetsche,AnnArbor,MI,USA MairiSakellariadou,London,UK AlwynvanderMerwe,GreenwoodVillage,CO,USA RainerVerch,Leipzig,Germany ReinhardF.Werner,Hanover,Germany ChristianWüthrich,Geneva,Switzerland Lai-SangYoung,NewYorkCity,NY,USA The international monograph series “Fundamental Theories of Physics” aims to stretch the boundaries of mainstream physics by clarifying and developing the theoreticalandconceptualframeworkofphysicsandbyapplyingittoawiderange ofinterdisciplinaryscientificfields.Originalcontributionsinwell-establishedfields such as Quantum Physics, Relativity Theory, Cosmology, Quantum Field Theory, Statistical Mechanics and Nonlinear Dynamics are welcome. The series also provides a forum for non-conventional approaches to these fields. Publications should present new and promising ideas, with prospects for their further development, and carefully show how they connect to conventional views of the topic. Although the aim of this series is to go beyond established mainstream physics, a high profile and open-minded Editorial Board will evaluate all contributionscarefullytoensureahighscientificstandard. Moreinformationaboutthisseriesat http://www.springer.com/series/6001 Albert Petrov Quantum Superfield Supersymmetry AlbertPetrov DepartamentodeFisica UniversidadeFederaldaParaiba JoãoPessoa,Brazil ISSN0168-1222 ISSN2365-6425 (electronic) FundamentalTheoriesofPhysics ISBN978-3-030-68135-7 ISBN978-3-030-68136-4 (eBook) https://doi.org/10.1007/978-3-030-68136-4 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface This review represents itself as a collection of lecture notes on superfield supersymmetrybasedonlecturesgivenatInstitutodeFísica,UniversidadedeSão Paulo(SãoPaulo),InstitutodeFísica,UniversidadeFederaldoRioGrandedoSul (PortoAlegre),andDepartamentodeFísica,UniversidadeFederaldaParaiba(João Pessoa). The book includes many examples of explicit quantum calculations performed with use of the superfield formalism and is intended for students at levelsofundergraduateandgraduatestudiesinquantumfieldtheoryandtheoryof elementaryparticlesandforresearchersworkinginrelatedsubjects. AuthorisgratefultoC.A.S.Almeida,E.A.Asano,L.C.T.Brito,I.L.Buchbinder, M.Cvetic,A.F.Ferrari,F.S.Gama,H.O.Girotti,M.Gomes,S.M.Kuzenko,A. C.Lehum,R.V.Maluf,J.R.Nascimento,P.Porfirio,A.A.Ribeiro,V.O.Rivelles, A.J.daSilva,andE.O.Silvaforfruitfulcollaborationandinterestingdiscussions. TheworkhasbeenpartiallysupportedbyCNPq. JoãoPessoa,Brazil AlbertPetrov v Contents 1 Introduction ................................................... 1 2 EffectiveActionandLoopExpansion:GeneralFormulation ....... 5 3 SuperfieldDescriptionofThree-DimensionalSupersymmetric Theories ....................................................... 11 3.1 DefinitionsandConventions ................................ 11 3.2 FieldTheoryModels ....................................... 17 3.3 Non-AbelianGaugeModels ................................ 23 3.4 QuantumDescriptionfortheSuperfieldModels ............... 25 3.5 Effective Action of the Three-Dimensional Superfield TheoriesandtheProper-TimeMethod ........................ 32 3.6 Supersymmetry in Three-Dimensional Space-Time andNoncommutativity ..................................... 40 3.7 On the Noncommutativity in the Fermionic Sector oftheSuperspace ......................................... 44 3.8 Conclusion ............................................... 46 4 Four-DimensionalSuperfieldSupersymmetry ..................... 49 4.1 GeneralPropertiesoftheFour-DimensionalSuperspace ........ 49 4.2 FieldTheoryModelsintheFour-DimensionalSuperspace ...... 57 4.2.1 ChiralSuperfieldModels ........................... 58 4.2.2 AbelianGaugeSuperfieldModel ..................... 60 4.2.3 Non-AbelianGaugeTheories ........................ 62 4.3 GeneratingFunctionalandGreenFunctionsforSuperfields ...... 63 4.4 FeynmanSupergraphs ...................................... 69 4.5 SuperficialDegreeofDivergence.Renormalization ............. 75 4.6 Effective Action in Superfield Theories. Superfield Proper-TimeTechnique .................................... 81 4.7 ProblemofSuperfieldEffectivePotential ..................... 85 4.8 The Wess-Zumino Model and a Problem of the Chiral EffectivePotential ......................................... 89 4.9 GeneralChiralSuperfieldModel ............................ 104 vii viii Contents 4.10 TheHigher-DerivativeChiralSuperfieldModels ............... 110 4.11 SupergaugeTheories ....................................... 121 4.11.1 GeneralDescriptionofSupergaugeTheories ........... 122 4.11.2 BackgroundFieldMethod ........................... 129 4.11.3 Proper-TimeMethodfortheSupergaugeTheories ...... 134 4.12 Conclusions .............................................. 140 5 SupersymmetryBreaking ....................................... 143 5.1 ExplicitSupersymmetryBreaking ........................... 143 5.2 SpontaneousSupersymmetryBreaking ....................... 145 6 Conclusions .................................................... 147 Bibliography ...................................................... 151 Index ............................................................. 157 Chapter 1 Introduction Weprove,onceandforall,thatpeoplewhodon’tuse superspacearereallyoutofit. “Stuperspace” Theideaofsupersymmetryisnowconsideredasoneofthebasicconceptsoftheoret- icalhighenergyphysics(seee.g.[1]).Thesupersymmetry,beingafundamentalsym- metryallowingtorelatebosonsandfermions,providespossibilitiestoconstructthe- orieswithmuchbetterrenormalizationpropertiessincesomebosonicandfermionic divergent contributions in supersymmetric theories cancel each other. Moreover, thereareessentiallyfinitefour-dimensionalsupersymmetrytheorieswithouthigher derivatives,e.g.N =4super-Yang-Mills(SYM)theory(thedetaileddiscussionof thefinitenessofthistheoryispresentedin[2]),and,probably,N =8supergravity [3].Inthethree-dimensionalcase,N =6andN =8supersymmetricChern-Simons theoriesareknowntobefinite[4].Duetothisessentialimprovementofrenormal- ization properties, there is a common expectation that the expected unified theory ofallfundamentalinteractionsmustbesupersymmetric(seee.g.[5]andreferences therein). TheconceptofsupersymmetrywasintroducedinknownpapersbyVolkovand Akulov[6]andGolfandandLichtman[7]inearly70s.Itgotafurtheradvance in [8, 9](thehistoryofarisinganddevelopmentoftheconceptofthesupersymmetry, includingbiographicalaspects,canbefoundinthebook[10]).Theessentialbreak- through in supersymmetric field theory was achieved with introducing the idea of a superfield [11] (see also [12, 13]). The reason for it consists in the fact that the superfieldformulation,first,allowstomaintainmanifestsupersymmetriccovariance at all steps of calculations, with all calculations are performed in a very compact manner(indeed,anysupergraphcorrespondstoasetoftheFeynmandiagramsfor componentfields),second,automaticallytakesintoaccountthefamous“miraculous cancellations” of ultraviolet divergences responsible for an essential improvement oftherenormalizationbehaviorofsupersymmetricfieldtheories[14].Moreover,in thecontextofthenoncommutativefieldtheoryitturnsouttobethatthesupersym- ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2021 1 A.Petrov,QuantumSuperfieldSupersymmetry,FundamentalTheoriesofPhysics202, https://doi.org/10.1007/978-3-030-68136-4_1 2 1 Introduction metry allows for the cancellation not only of ultraviolet divergences, as usual, but alsoofdangerousinfrareddivergencesarisingduetotheUV/IRmixingmechanism (seee.g.[15]).Further,theconceptoftheextendedsupersymmetryhasbeenintro- duced, and various versions of an extended supersymmetric formalism have been elaborated. Within this lecture course, nevertheless, we concentrate on the N =1 superfieldformalismwhichisknownasoneofthemostuniversaltoolsforstudying thesupersymmetricfieldtheories. Now, let us briefly describe the main steps in development of the superfield methodology.Thefirstexampleofthesuccessfulapplicationofthesuperfieldcon- ceptwasthemodelproposedbyWessandZuminointheirseminalpaper[11]where thesimplestsuperfieldmodel,furthercalledtheWess-Zuminomodel,hasbeenfor- mulated.Further,in[9]theyintroducedthesuperfieldgaugemodel,thatis,theSYM theory. Intensive studies of different issues related quantum aspects of these theo- ries began to be carried out. One of the most important results is the finiteness of N =4 SYM theory that was proved in [16] (for discussions of finiteness of the supersymmetricgaugetheoriesseealso[17]),whichimpliedinastrongestinterest to the supergauge theories. Then, the superfield supergravity was formulated [18]. In1984,thefirstconsistentmethodologypossessinganexplicitextended(N =2) supersymmetryhasbeendeveloped,thatis,theharmonicsuperspace[19,20].Atthe sameyear,thesuperfieldapproachhasbeensuccessfullyappliedtothesuperstring theory[21],whichemphasizedtheimportanceofthismethodologywithinthestring context.Abitearlier,thesuperfieldformulationhasbeendevelopedforthesupersym- metrictheoriesinathree-dimensionalspace-time[22,23],whichfurthermanifested itself as a very convenient laboratory for studies of different issues related to the supersymmetry. It should be noted that actually, the interest to three-dimensional field theories, besides of their simplicity and better renormalization properties, is drivenbystudiesofgraphene.Inourcontext,itworthmentioningthatthesuperfield supersymmetricmodelforgraphenehasbeenformulatedaswell[24]. A new epoch for studies of the superfield theories began in 1991 when, in the papers [25, 26], the chiral quantum contributions to the effective action were dis- cussedforthefirsttime.Thesepaperscalledanattentiontothesuperfieldmethod- ologyforevaluatingtheeffectivepotentialwhosedevelopmenthasbeencarriedout in a series of works initiated by the paper [27], where this methodology has been successfully applied to the Wess-Zumino model. Further, the success of the paper [28] strongly increased the interest to various issues, both perturbative and non- perturbative ones, related to supergauge theories, especially those ones possessing theextendedsupersymmetry. Amongthemostsuccessfulapplicationsofthesuperfieldmethodology,alsoitsuse forthenoncommutativesupersymmetricfieldtheoriesdeservestobementioned.The famouspaper[29]establishedthefactthat,sincethespace-timenoncommutativity does not affect the anticommuting (Grassmannian) coordinates of superfields, the superfieldmethodologycanbeusedasaverypowerfulinstrumenttodealwiththe famous problem of the UV/IR mixing [30] known for generating the new infrared divergences which are able to break the perturbative expansion. It was shown first in [29] that the supersymmetric extension of field theories, implying in improving

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.