FoundationsofPhysicsmanuscriptNo. (willbeinsertedbytheeditor) DanielC.Galehouse Quantum statistics as geometry: Conflict, Mechanism, Interpretation, and Implication 5 1 0 2 n Recieved:dateAccepted:dateToday:January30,2015 a J 9 Abstract Theconflictbetweenthedeterminismofgeometryingeneralrelativity 2 and the essential statistics of quantum mechanics blocks the development of a unified theory. Electromagnetic radiation is essential to both fields and supplies ] h a common meeting ground. It is proposed that a suitable mechanism to resolve p these differences can be based on the use of a time-symmetrictreatment for the - radiation.Advancedfieldsoftheabsorbercanbeinterpretedtosupplytherandom t n character of spontaneous emission. This allows the statisticsof the Born rule to a comefromthespontaneousemissionthatoccursduringaphysicalmeasurement. u Whentheabsorberisincluded,quantummechanicsiscompletelydeterministic.It q issuggestedthatthepeculiarpropertiesofkaonsmaybeinducedbytheadvanced [ effectsoftheneutrinofield.Schro¨dinger’scatlosesitsenigmaticpersonalityand 1 theidentificationofmentalprocessesasanessentialcomponentofameasurement v isnolongerneeded. 3 9 5 Keywords geometry · quantum mechanics· radiation· determinism· general 7 relativity 0 . 1 PACS 01.30.Cc·02.40.Ky·03.65.Ta·04.50.-h·14.40.Aq 0 5 1 MathematicsSubjectClassification(2000) 51Fxx·51PO5·81Q70·81S99· : 83E15 v i X D.Galehouse r a UniversityofAkron Tel.:330-658-3556 E-mail:[[email protected]] 15764GalehouseRd.Doylestown,Ohio44230 homepage:[http://gozips.uakron.edu/~dcg] 2 1 Conflict Theconceptualclashbetweenthestatisticalnatureofquantummechanicsandthe deterministic character of gravity has persisted since the early days of modern physics.Here,amechanisticdescriptionisofferedthatcanaccountforfundamen- tal statistics in a fully geometrical theory. It is a natural construction for a ge- ometrybasedquantumtheoryandallowsotherdevelopmentstoprogress.Larger structures involving more dimensions can extend the range to charge, spin, and weakorstronginteractions.[1–3] Inthesegeometricaltheories,particlesaredescribedexclusivelybywavefunc- tionshavingtheconventionalquantumproperties.Allinteractionsaremediatedby conformaltransformationsthatareappliedtoageometrysuitedtotheproperties oftheindividualparticle.Quantum motioncomesfrom thetimedevelopmentof space-timedistortions.Therearenoclassicalpointobjects.Particledynamicsfol- lowsfromaninvariantwaveequation.AnyHilbertspaceisintroducedasameans ofcalculationandissubsidiarytothefieldequation.Awavefunctionexpansion maybeuseful,butitisonlythesumtotalwave-functionthatisidentifiedwithany partofthegeometricalsystem.Theevolutionofthesystemofwavefieldsfollows a Dirac-like equation and is completely deterministic. This article discusses the foundationalissuesthatarerelevanttothisapproach. WithoutclassicalparticlesitisdifficulttoformulateLaplace’snotionofdeter- minism.Wave-particlesmayextendtotheedgesofspace,andperhapsthewhole universe.Suchanobject,subjecttointeraction,butultimatelyfixedinspace-time, istobeacceptedasthetargetofLaplace’sconcept.Theassertionofdeterminism, that eventsat a latertimeare entirelycalculablefrom those atan earliertime,is difficulttoapplybecausetheparticlesarenevercompletelylocalized.Allevents, past and future, are set in the geometry. The individual solution of such a sys- tem of equations can have no formal statistics. Perhaps one could denote it as ’mechanistic’ or ’absolute’ determinism. Time reversal is an exact fundamental symmetry.Thenotionsofcausalityanddeterminismthatareusedinconventional measurementtheorymustbedevelopedfromthepropertiesoftheelectromagnetic interactions. 2 Mechanism Figure1offerssomeexamplesfromradiationtheorythatareintendedtoillustrate the difficulties of describing radiation in a general relativisticsetting. The usual simple concept that uses the acceleration relative to a local inertial frame is to be found insufficient.Adifficultgeneralcaseisthatofa chargedmasscoasting amonggravitatingbodies.Thereisno simpledefinitionofacceleration,nochar- acteristicscaleofdistance,noassuredvelocitylimit,nocharacteristicwavelength, andnoguaranteeofasimpleexpansionoftheradiationfield.Theseissuesalldefy theusualinterpretation.Itshouldbenoted,thatbecauseofdiffraction,aquantum particlecannot be assigneda constant accelerationrelativetoanyinertialframe. The usual concept of radiation fails when accelerationis not absolute. A proper theorymusthandle allcasesaswellasthemostgeneralpossibilityof additional non-inertialforces(suchasweakorstronginteractions). 3 Fig.1 Ifachargedparticleoscillatesonaspring,radiationisemitted.Therateofradiationis calculatedfromtheaccelerationrelativetothelocalinertialframe.Ifithangsstill,noradiation isemitted.Butingeneralrelativityitisnotthatsimple.Thestationaryparticleinagravitational fieldisnolongerinaninertialframe,ithasaconstantupwardaccelerationbutdoesnotradiate. Iftheparticleisallowedtofall,itistheninaninertialframeeventhoughitacceleratesdownward anddoesradiate.Moreinterestingly,iftheparticleisput,atafixedheightonthetopofatower thatrotateswiththeearth,itwillradiatefromtherotationbutnotfromtheaccelerationofgravity. Ifnow,thetowerismadetaller,theradiationincreases.Thisradiationpersistseveniftheheight isincreasedtothegeo-synchronouspoint.Themotionisnowinertialbutitmuststillradiate.If thetowerisremoved,theradiationisunchanged(tolowestorder)buttheenergycomesfrom thegravitationalpotentialofthemassabovetheearthratherthantherotationalkineticenergy oftheearthitself. Moredifficultisthecalculationofradiationreactionforces.Theseextracten- ergyfromtheemitter.Usually,theyarederivedaftertheradiationitselfisknown. Thattheseforcesaresecondarytotheinteractioncannotbeheldforageometrical theory.Considertwocloselyspacedemitterstransmittinginphase.Thepowerof each alone depends on the respective driving current squared. For both emitters together,the totalpower isproportional tothe square ofthesum ofthecurrents. (The electricfields are in phase and interfere constructively.)The total emission is greater than the sum of the parts. The additional power must be supplied by thedrivingsystem.Thedrivingvoltageincreases.Asimplecalculationshowsthat thisincreasedreactionisequivalenttotheenergyrequiredtomovethecurrentof eachantennathroughthereactionfieldoftheother.Thisbehaviorhasbeenknown inatomicspectroscopysincetheearlydays.Inconventionalquantummechanics, analternativeconstructionisusedwhichmodelssuchaprocessasthetransferof energyintooroutofanabstractvacuumfield. These issues,in a general relativisticsystem,are best handled by the mathe- maticaldeviceof the covarianttwo-point tensor. These green’s functions actbe- tween separated positions in space-time. The two point tensor has indicies that transformcovariantlyateitherend.Thus,aradiativeinteractioncanbedescribed inasystematicwaywithoutdependingoninertialframes.Inthiscontext,atime- symmetricformulationmaybeused.[4–8]Problems withframedependenceare resolvedandtheradiativeforcesaredescribedconsistently.Allforceshaveanon- tological geometrical origin. Quantum radiation forces, once interpreted as vac- uumeffects,arehereduetotheadvancedfieldsofotherparticles. Aproperanalysiswouldrequireacovariantformofquantumelectrodynamics. A complete construction is not yet available.The geometrical theories are exact andnon-perturbativeaswritten.Thesemayeventuallyleadtoastructureinwhich theconventionalperturbativeexpansionappearsasalimitingcase.Itisadifficult problembecauseanyattempttoformulateanon-perturbativequantumelectrody- namics requires the use of curvilinear fields. Fortunately, conventional quantum electrodynamicsissufficientforthefoundationalissuesconsideredhere. 4 3 Interpretation Asshowninfigure2,acavityisbuiltuptocontainparticlesthatevolvedetermin- istically. There are no statistics since no formal measurements are being made. Photonswillbeexchangedbetweenkparticlesmakinguptheexperimentsandthe n particlesoutside. The outer particlescontribute to the random characterof the spontaneous emission. For large n, normal radiative behavior is obtained. These absorbingparticlesparticipateinthetransitionsinlieuofthevacuumsystem.One concludesthatiftheabsorbingparticlesareincludedinthedescription,thequan- tummechanicsiscompletelydeterministic.Thisisthemainresult:Thestatistics ofspontaneousemissionarecompatiblewithamechanisticgeometry. Fig. 2 Starting from a perfectly reflecting empty cavity, particles are added, one by one, to buildupanexperimentalapparatus.Perhapskofthem,willbearrangedtomaketheexperiment itself.Inaddition,nparticleswillmakeupanabsorber.Theseareplacedaroundtheoutsideand exchangephotonswiththeexperiment.Asnbecomesverylarge,theexteriormatterissufficient toabsorboremitallofthephotonsthatmayberequiredbytheexperiment.Forsufficientlylarge n,themirrormayberemoved. Spontaneousemissionoccursastheadvancedfieldscomeinfrom thefuture. The result is a contribution to random behavior having no identified cause. The questionsare:’Whatcausesspontaneousdecay?’and’Whataretheunpredictable effects of advanced radiation?’. The answer is that they are aspects of the same thing. The advanced interactions initiate the electromagnetic decay and account for the randomness in the spontaneity of emission. In a geometrical theory, the non-localcharacteroftheinteractionderivesfromtheoriginatingconformaltrans- formations.Anadvancedorretardedinteractionisonlyamathematicalrepresen- tationofpartofthewholeinteraction.(Asnotedbelow,thenon-randomeffectsof theadvancedfieldsmayalsocontributetoanentanglement.) 4 Implication Giventhisunderstandingofspontaneousemission,itispossibletogiveanexpla- nationforthefundamentalstatisticsofquantumparticlesastheyareobservedin a diffraction experiment. The proposition is that all such measurement statistics deriveultimatelyfromspontaneousemissionthatoccursduringthemeasurement itself.Born’sexperiment,[9],asillustratedinfigure3,showsanucleardecayand the associated detection as an emitted electron collides with the screen. Born’s arguments assign the square of the absolute value of the wave function to the probability density. Here, the individual detectionevents are effectivelyselected bythestatisticsofspontaneousemission.Anemittedelectrontravelstothescreen, andeventuallycomestorestasabound wavefunctiononanactivedetectorsite. 5 Fig.3 Betaparticlesareemittedfromthenucleusandtravel,asawave,toadetector.Theycas- cadetofinalstatesonthescreen.Acollectionofbareprotonsareusedasasimplifiedmodelfor thescreen.Aprobabilitydistributionisbuiltupfrommultipleobservationsofparticlearrivals. Eachelectroncomestorest,asawave,ononeofthedetectorsites.Radiationisemittedduring thetimeofcapture. Alongtheway,itwillemitradiationasitcascadesthroughoneormoreinterme- diatestates.Theforcesofradiativereactionacttochangethequantumstateofthe electronasitprogresses.Energyisemitted.Ifitendsup onanupperproton, the radiation is different, in detail, than if it ends up on a lower proton. This radia- tionissometimescalledcascaderadiationor,athigherenergies,bremstralung.If theemittedelectromagneticfieldsaretime-reversed,theelectronwillberemoved from the proton and be returned to the nucleus. The information in the brem- stralungcontainsalldetailsofhowtheelectronmadeitstransitionfromtheinitial statetothefinalposition.The processappears tobe statisticaliftheinformation carriedawayby the radiationis lost to the observer. The ’choice’of a particular protonwillappearrandomandwilldependontheoutcomeofthevariousuncon- trolledcompetitivespontaneousemissionprocesses. Because the electromagnetic transitions, are proportional to the ’matrix ele- ment squared’ or ’transition probability’, the chance of any given final position (say on a particularindividual proton) is proportional to the square of the initial wavefunction.Ofcourseagoodmeasurementrequiresthatthetransitiontoeach finalpositionbeequivalent.Theobserveddistributionoffinalstatesthusfollows from the original probability wave. This bias, affecting the spontaneous rate, is carriedthroughthecascadetothefinaldistribution. Apracticaldetectorgivesanaccurateprobabilitydowntothesizeofthefinal electronstate.Noclassicalpoint eventsareused,themeasurementisadequately modeledwithwavefunctions.Ageneralquantummeasurementisanabstraction of such a quantum-electromagnetic interaction. (This interpretation may be ex- tended to other force fields.) In this way, the statistics of particle observations appear. The real statistical effects originate in the absorber and the underlying theoryremainsdeterministic. In figure 4, quantum states which interact non-linearly with the electromag- netic field force correlations or entanglements between photons. As part of this process, the advanced and retarded interactions must also replace the space-like interactions that are used in classical physics but which are not accepted in rel- ativity.The advanced part of the interactioncontributes to the correlations of an entangledstate.Aspinorpositioncorrelationmaybecreated.Radiativereaction termsareessential,insuringthatameasurementofoneofthecorrelatedparticles includesameasurementoftheother. The problem of retrodiction can be explored more carefully. The immediate question,asposedinfigure 5,iswhetherelectromagneticenergywillbeemitted 6 C E F ψ ψ 1 2 A B G Fig.4 Anentanglementisanongoinginteraction,forwardandbackward,betweenthecollected elementsoftwowave-functions.Thestateschangecontinuouslyandmayundergobindingor scattering.Sometransitionsrequiretheabsorptionoremissionoftwophotonssimultaneously. Correlationsareenforced.AdoubleabsorptionatCmaybesatisfiedbythesimultaneousarrival oftwophotonsfromAandB.AcorrelatedpairemissionfromaparticleatGmaybeidentified bycoincidencetimingofeventsatEandF.Theenigmaistounderstandhowanyeffectcould getfromBtoAsincetheyarespace-likeseparated.RetrodictionfromCtoBisnotallowed classically. withoutanyabsorberpresent.[10,Seefootnote 23,p455]. Ifthelightisallowed tocontinueindefinitelyitwillpermanentlyviolatemass,energy, andmomentum conservation.Theheatenergyofthefilamentwillbelosttoeternity.Alternatively, Iflightcannotbeemitted,thefilamentwillhaveanunexpectedlyhighertemper- ature.Atthepresenttime,therearenoidentifiedobservationsofanysucheffect; however,inalatercosmologicalepoch,thedensityofdistantparticleswillbeless andareductioninabsorptionshouldoccur.1 Fig.5 Aflashlightpointsoutwardattheedgeoftheuniverse.Iftherearenoparticlestoabsorb radiationcanenergybeemitted? Forgeometricaltheories,ontologyrequiresthatnophotonsbeemittedwithout beingabsorbed.Ifthistrue,andifthereareabsorberlimitationstobefound,space- liketransmissionofsignalsmaybepossible.Thespacetimediagramisshownin figure 6. A switchable absorber is placed in front of the flashlight. A burst of radiationswitchesontheabsorberwhichretrodictstotheflashlight.Theprocess isinaccordwithrelativityifthereversesignalstravelonnulllines. Observational tests are difficult.They have not been found possible for pho- tons but other null fields may show an effect. At present, tests using gravitation areopen. Insofarasneutrinos arefundamentallynull,theymaysupplysuchan exampleofretrodiction,especiallysincethecosmologicalneutrinoopacityiswell below that of the photon. The studies of kaon decay are extensive and not com- pletelyconclusive but availabledata may already show such an effect.[11] Ele- mentary discussions of kaons are available. [12–14] The approach of this paper 1 Thisissueisalsorelatedtotheinformationparadoxinblackholetheory. 7 A i B t=0 t I F x L t=0 Fig.6 Aflashlight,F,pointsthroughatransparentcell,B,ataregionofthecosmos,A,having deficientabsorption.Thefilamenttemperatureishigherbecausethelightemissionisinhibited. Thetransparentcellcontainsagasthatcanbemadeopaquebyanopticalsignalfromanauxiliary source,L.Aburstofradiationwillopacifythisintermediateabsorber.Atthistime,theflashlight emissionwillincreaseandthefilamenttemperaturewilldecrease.Theresistancedecreasesand the filament current increases coincident with the emission of the switch pulse. In the local systemasshown,thesignalfrompointL,att=0,appearsatthespacelikeseparatedpointF,at t=0. forces a modification of the vacuum and requires corrections to the Weisskopf- Wignerformalism,[15],includingitsuseforneutrinoemission.Manyquestions arestillopen;seeforexample[16,17]. There are some elementary considerations expected for the effects on kaon decay. The K and its antiparticle, the K are putative charge-parity conjugates. 0 0 Inavacuumthatisexplicitlyneutrino-antineutrinounsymmetrical,theremaybe apreferenceforsomedecaysoverothers.Differencesinresonancewidthorlife- timesmaybeinduced.Thedecayandtimeevolutionoftheparticlemaythenshow deviationsfromexpectationsbasedonexactCPinvariance.ForcesthatviolateCP invariance are brought in by the advanced fields. The preference for absorption ofanti-neutrinosbyprotonsandneutrinosbyneutronsshouldleaveanimbalance thatdependsontheneutrontoprotonratiowithinthebackgroundregionofbeam absorption.AnapparentviolationofCPinvarianceispossibleevenifthefunda- mentalphysicaldynamicsisinvariant.Suchprocessesmayconfoundthecurrently acceptedinterpretationsofkaondecay.Intime,thesensitivitiesofbenchexperi- mentsthatdonotemitneutrinostoinfinitymaydenytheexistenceofexplicitCP breaking interactions. It is an important question for geometrical theories as no structuralviolationofCPinvarianceisexpected. Accordingly, different absorbing backgrounds may affect decayrates. Sensi- tivitiesarehardtopredict,butknownneutrontoprotonratiosdovaryasmuchas tenpercentforshortdistances.Themanyknownobservationsofkaondecaymay be shown, with further analysis, to have a background dependence. One might lookathowkaonsdecaytowardtheoceans,orthecrust,orthecoreoftheearth. Theremaybetestsinvolvingthegalaxyorsolarsystem.Theissueisimportantfor quantumfoundationsbecause,iftheadvancedeffectscanbeproven,theabsorber mustthencontributeexplicitlytothestatisticsofspontaneousemission. Theseconstructionsabrogatestandardmeasurementtheory.VonNeumannpro- posedaseparatetypeofevolutionforquantummeasurements.Aformalprocess, existingintheclassicaldomain,wastobeassociatedwiththementalrecognition ofanobservation.Inthepresentera,ourunderstandingofcomplexthings,living and non-living is more complete, and the separation between them is no longer distinct.Theidentificationofaseparatementalprocessaspartofameasurement 8 isnotascompellingasitoncewas.Thecombinedclassificationoflivingthings, such as cats, with inanimate objects, such as computers seems more reasonable now.Wealsounderstandthatneitherourthoughtprocessesnorthemachinations ofcomputersaretobemodeledclassically.Foracomplexdevice,elementarysta- tisticalvariationsintheoutputcanbeduetodeficienciesoftheprocessingmech- anismorerrorsintheincominginformation.Theseappeartousasdeterministic. Inaddition,othervariationsinoutputcomefromtheretrodictionoftheadvanced fields and are identified as true fundamental noise. This noise is equivalent to spontaneousemissionandcannotbeeliminated.Itappearstousastrulyrandom, butfortheuniverseasawholemaybeconsideredabsolutelydeterministic. Also now, the cat paradox [18] is elementary. The radioactive decay will re- quire a free absorber for the emittedneutrino. This neutrino willtakewithit the angular momentum, that must be removed. The electron will set off the counter that will releasethe poison and and kill the cat.The process depends on the ab- sorber;therandomnessofthenucleardecayneednolongerbeconsideredfunda- mental. The cat either dies or lives. There are no superpositions. You may open theboxatanytimetoseewhathashappened. These are the implications of a fundamental geometry for the quantum. A mechanisticapproach leads tothe universal use of time-symmetryinall interac- tions.Spontaneousemissionisidentifiedwiththeadvancedfields,andtheorigin of the statistics of the probability density are from the electromagnetic cascade. Experimentaltestsmayconfirmordenythesepresumptions.IsitGodorMother naturethatprovidesthespontaneousbehaviorofperson,cat,oratom? 5 Acknowledgement This article is based on a talk given at the Conference ”Quantum Theory from ProblemstoAdvances”,June9-12,2014,LinnaeusUniversity,Sweden. References 1. D.C.Galehouse,BalkanJ.ofGeometryandItsApplications5(1),93(2000) 2. D.C.Galehouse,inMathematicalPhysicsResearchontheLeadingEdge,ed.byC.V.Ben- ton(NovaScience,2004),pp.21–49 3. D.C.Galehouse,FoundationsofPhysics40(1),961(2010) 4. P.C.W.Davies,Proc.Camb.Phil.Soc.68,751(1970) 5. P.C.W.Davies,J.Phys.A4,836(1971) 6. P.C.W.Davies,J.Phys.A5,1025(1972) 7. D.Leiter,NuovoCimento63,1087(1969) 8. D.Leiter,Am.J.Phys.38,207(1970) 9. M.Born,Z.fu¨rPhysik38,803(1926) 10. R.P.Feynman,PhysicalReview80,440(1950) 11. PDG,Phys.Rev.D86,010001(2012) 12. V.L.Fitch,Rev.ModPhys.53(3),367(1981) 13. J.W.Cronin,Rev.ModPhys.53(3),373(1981) 14. P.K.Kabir,(AcademicPress,1968) 15. V.Weisskopf,E.Wigner,Z.Phys.63,54(1930) 16. A.D.D.etal.,FoundationsofPhysics42,778(2012) 17. S.H.Aronson,Phys.Rev.D28(3),476(1983) 18. E.Schro¨dinger,Naturwiss.23,807(1935)