ebook img

Quantum States of Light PDF

110 Pages·2015·11.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum States of Light

SPRINGER BRIEFS IN MATHEMATICAL PHYSICS 10 Akira Furusawa Quantum States of Light 123 SpringerBriefs in Mathematical Physics Volume 10 Series editors Nathanaël Berestycki, Cambridge, UK Mihalis Dafermos, Cambridge, UK Tohru Eguchi, Tokyo, Japan Atsuo Kuniba, Tokyo, Japan Matilde Marcolli, Pasadena, USA Bruno Nachtergaele, Davis, USA More information about this series at http://www.springer.com/series/11953 Akira Furusawa Quantum States of Light 123 AkiraFurusawa Department ofApplied Physics TheUniversity of Tokyo Tokyo Japan ISSN 2197-1757 ISSN 2197-1765 (electronic) SpringerBriefs inMathematical Physics ISBN978-4-431-55958-0 ISBN978-4-431-55960-3 (eBook) DOI 10.1007/978-4-431-55960-3 LibraryofCongressControlNumber:2015957783 ©TheAuthor(s)2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerJapanKK Preface We learn about the properties of quantized optical fields in quantum optics. Althoughthismaysoundoldandtraditional,itisnot.Inreality,weassumedoptical fields as classical fields until very recently. We did not have to quantize the field because our light source was only a laser and whose state, a coherent state, can be regarded as a classical field. Wehavetousequantumopticsnowadays,ofcourse.Itisbecausesqueezedlight is easily created these days and we have to handle it. Squeezed light is a pure quantum mechanical state, which cannot be described without quantum optics. In thatsense,the“phasetransition”occurredwhenSlusheretal.createdthesqueezed light for the very first time in 1985. After the “phase transition,” various “pure” quantum states were created, which include superposition of a vacuum and a single-photon state, a Schrödinger’s cat state, and so on. In this book, we explain the definition and the way to create these “modern” quantum states of light. For that purpose we use many figures to visualize the quantum states to help the readers’ understanding, because the quantum states sometimes look very counterintuitive when one only looks at equations. Tokyo Akira Furusawa v Acknowledgments All the experimental results presented in this book come from experiments carried out by the members of Furusawa group at the Department of Applied Physics of The University of Tokyo, including Nobuyuki Takei, Hidehiro Yonezawa, Yuishi Takeno, Jun-ichi Yoshikawa, Noriyuki Lee, Mitsuyoshi Yukawa, Yoshichika Miwa, Kazunori Miyata, and Maria Fuwa. The author would like to thank all membersofFurusawagroup.TheauthoralsoacknowledgesIlianHäggmarkforthe language review. This book was originally written in Japanese and published by Uchida Roukakuho in 2013. Tokyo Akira Furusawa vii Contents 1 Quantum States of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Quantization of Optical Fields. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Coherent States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Balanced Homodyne Measurement. . . . . . . . . . . . . . . . . . . . . . . 10 1.3.1 Beam Splitters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.2 Balanced Homodyne Measurement. . . . . . . . . . . . . . . . . 13 1.3.3 Eigenstates of Quadrature Amplitude Operators and Marginal Distributions . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Single-Photon States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4.1 Marginal Distribution of a Single-Photon State . . . . . . . . 21 1.5 Photon-Number States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.6 Superposition States of a Vacuum and a Single-Photon State . . . . 26 1.7 Coherent States and Schrödinger Cat States . . . . . . . . . . . . . . . . 29 1.8 The Wigner Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.9 Superposition States of a Vacuum and a Two-Photon State. . . . . . 45 1.10 Squeezed States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 1.11 Squeezing Operation and Squeezed States. . . . . . . . . . . . . . . . . . 52 1.12 Quantum Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2 Creation of Quantum States of Light . . . . . . . . . . . . . . . . . . . . . . . 69 2.1 Creation of Coherent States of Light . . . . . . . . . . . . . . . . . . . . . 69 2.2 Creation of a Squeezed Vacuum . . . . . . . . . . . . . . . . . . . . . . . . 74 2.3 Creation of a Single-Photon State . . . . . . . . . . . . . . . . . . . . . . . 80 2.4 Creation of a Minus Cat State. . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.5 Creation of a Superposition of Photon-Number States . . . . . . . . . 86 2.6 Creation of Quantum Entanglement . . . . . . . . . . . . . . . . . . . . . . 96 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 ix Chapter 1 Quantum States of Light 1.1 Quantization ofOpticalFields Inthissection,wepresentanintuitivedescriptionofquantumoptics. Accordingtothequantumfieldtheoryavectorpotentialoperatorofopticalfields Aˆ(r,t)canbedescribedas Aˆ(r,t)=A ei(k·r−ωt)aˆ +A∗e−i(k·r−ωt)aˆ†. (1.1) 0 0 Herethespatialmodeisaplanewavewhichpropagatesinthedirectionofthewave vectork,A denotesacomplexvectorpotentialorthogonaltothewavevector,ωis 0 theangularfrequencyoftheopticalfield,aˆ andaˆ† aretheannihilationandcreation operators,respectively,andnˆ =aˆ†aˆ isthenumberoperator. aˆ andaˆ†actoneigenstatesofthenumberoperator(Fockstates)|n(cid:3)(nˆ|n(cid:3)=n|n(cid:3)) as √ aˆ|n(cid:3)= n|n−1(cid:3), √ aˆ†|n(cid:3)= n+1|n+1(cid:3), (1.2) nˆ|n(cid:3)=n|n(cid:3). We can create an electrical-field operator Eˆ(r,t) and a magnetic-flux density operatorBˆ(r,t)oftheopticalfieldbyusingthefollowingequationsandEq.(1.1). Namely,byusing ∂A(r,t) E(r,t)=− , ∂t (1.3) B(r,t)=∇×A(r,t) andEq.(1.1),wecanget ©TheAuthor(s)2015 1 A.Furusawa,QuantumStatesofLight,SpringerBriefs inMathematicalPhysics,DOI10.1007/978-4-431-55960-3_1 2 1 QuantumStatesofLight Eˆ(r,t)=iω(A ei(k·r−ωt)aˆ −A∗e−i(k·r−ωt)aˆ†), (1.4) 0 0 Bˆ(r,t)=ik×(A ei(k·r−ωt)aˆ −A∗e−i(k·r−ωt)aˆ†). (1.5) 0 0 Moreover,fromk·A =0and|A |=A ,wecangettheHamiltonianHˆ which 0 0 0 correspondstothefieldenergyas (cid:2) (cid:3) (cid:4) Hˆ = 1(cid:4) Eˆ(r,t)·Eˆ(r,t)+ 1 Bˆ(r,t)·Bˆ(r,t) dr 2 0 2μ (cid:3) (cid:4)(cid:2) 0 1 1 = (cid:4) ω2+ |k|2 A2dr(aˆaˆ†+aˆ†aˆ) 2 0 μ 0 0 (cid:2)ω = (aˆaˆ†+aˆ†aˆ) 2 (cid:3) (cid:4) 1 =(cid:2)ω nˆ + , (1.6) 2 w(cid:5)here(cid:4)0 isthepermittiv(cid:5)ityofvacuum,μ0 isthemagneticpermeabilityofvacuum, A2dr=(cid:2)/2(cid:4) ω,and e±2ik·rdr=0. 0 0 Now let the optical field operators evolve in time. When the Hamiltonian does notchangeintime,theHeisenbergequationofmotionofanoperatorAˆ(t)becomes i(cid:2)dAˆ(t) =[Aˆ(t),Hˆ]. (1.7) dt Byusingthisequation,wecanget Aˆ(t)=eiH(cid:2)ˆtAˆ(0)e−iH(cid:2)ˆt. (1.8) So the time evolution of an electrical-field operator Eˆ(r,t) of an optical field shouldobey Eˆ(r,t)=eiH(cid:2)ˆtEˆ(r,0)e−iH(cid:2)ˆt. (1.9) By using Eqs.(1.6) and (1.9) we can check Eq.(1.4) from the view point of time evolutionofoperators.Notethatweusedthefollowingequationhere: ei(cid:2)ω(nˆ(cid:2)+1/2)taˆe−i(cid:2)ω(nˆ(cid:2)+1/2)t =aˆe−iωt. (1.10) Similarly we can check Eq.(1.5) for the magnetic-flux density operator Bˆ(r,t) ofanopticalfieldfromtheviewpointoftimeevolutionwithEqs.(1.6)and(1.9). Althougheverythingis“peacefulandquiet”sofar,wedomoreinquantumoptics. Inquantumopticswethinkthatanannihilationoperatoraˆ evolvesaccordingto Eq.(1.10). Namely we set aˆ(t)=aˆe−iωt. It is a misunderstanding in some sense, because an annihilation operator is a field operator and should not evolve in time. However,ifwesetitlikethis,itbecomesveryconvenient.Soinquantumopticswe

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.