ebook img

Quantum Physics - Department of Physics and Astronomy PDF

301 Pages·2012·2.48 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Physics - Department of Physics and Astronomy

Quantum Physics Eric D’Hoker Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA 15 September 2012 1 Contents 1 Introduction 12 1.1 Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 Constants of Nature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Reductionism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Two-state quantum systems 16 2.1 Polarization of light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Polarization of photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 General parametrization of the polarization of light . . . . . . . . . . . . . . 20 2.4 Mathematical formulation of the photon system . . . . . . . . . . . . . . . . 20 2.5 The Stern-Gerlach experiment on electron spin . . . . . . . . . . . . . . . . . 22 3 Mathematical Formalism of Quantum Physics 26 3.1 Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.1 Triangle and Schwarz Inequalities . . . . . . . . . . . . . . . . . . . . 27 3.1.2 The construction of an orthonormal basis . . . . . . . . . . . . . . . . 27 3.1.3 Decomposition of an arbitrary vector . . . . . . . . . . . . . . . . . . 28 3.1.4 Finite-dimensional Hilbert spaces . . . . . . . . . . . . . . . . . . . . 29 3.1.5 Infinite-dimensional Hilbert spaces . . . . . . . . . . . . . . . . . . . 29 3.2 Linear operators on Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.1 Operators in finite-dimensional Hilbert spaces . . . . . . . . . . . . . 31 3.2.2 Operators in infinite-dimensional Hilbert spaces . . . . . . . . . . . . 31 3.3 Special types of operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 Hermitian and unitary operators in finite-dimension . . . . . . . . . . . . . . 34 3.4.1 Unitary operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.2 The exponential map . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Self-adjoint operators in infinite-dimensional Hilbert spaces . . . . . . . . . . 37 4 The Principles of Quantum Physics 38 4.1 Conservation of probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Compatible versus incompatible observables . . . . . . . . . . . . . . . . . . 39 4.3 Expectation values and quantum fluctuations . . . . . . . . . . . . . . . . . 41 4.4 Incompatible observables, Heisenberg uncertainty relations . . . . . . . . . . 41 4.5 Complete sets of commuting observables . . . . . . . . . . . . . . . . . . . . 43 2 5 Some Basic Examples of Quantum Systems 44 5.1 Propagation in a finite 1-dimensional lattice . . . . . . . . . . . . . . . . . . 44 5.1.1 Diagonalizing the translation operator . . . . . . . . . . . . . . . . . 45 5.1.2 Position and translation operator algebra . . . . . . . . . . . . . . . . 46 5.1.3 The spectrum and generalized Hamiltonians . . . . . . . . . . . . . . 47 5.1.4 Bilateral and reflection symmetric lattices . . . . . . . . . . . . . . . 47 5.2 Propagation in an infinite 1-dimensional lattice . . . . . . . . . . . . . . . . 48 5.3 Propagation on a circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4 Propagation on the full line . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.4.1 The Dirac δ-function . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.5 General position and momentum operators and eigenstates . . . . . . . . . . 53 5.6 The harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.6.1 Lowering and Raising operators . . . . . . . . . . . . . . . . . . . . . 56 5.6.2 Constructing the spectrum . . . . . . . . . . . . . . . . . . . . . . . . 57 5.6.3 Harmonic oscillator wave functions . . . . . . . . . . . . . . . . . . . 57 5.7 The angular momentum algebra . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.7.1 Complete set of commuting observables . . . . . . . . . . . . . . . . . 59 5.7.2 Lowering and raising operators . . . . . . . . . . . . . . . . . . . . . 59 5.7.3 Constructing the spectrum . . . . . . . . . . . . . . . . . . . . . . . . 60 5.8 The Coulomb problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.8.1 Bound state spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.8.2 Scattering spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.9 Self-adjoint operators and boundary conditions . . . . . . . . . . . . . . . . . 64 5.9.1 Example 1: One-dimensional Schro¨dinger operator on half-line . . . 64 5.9.2 Example 2: One-dimensional momentum in a box . . . . . . . . . . 65 5.9.3 Example 3: One-dimensional Dirac-like operator in a box . . . . . . 67 6 Quantum Mechanics Systems 68 6.1 Lagrangian mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.2 Hamiltonian mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3 Constructing a quantum system from classical mechanics . . . . . . . . . . . 71 6.4 Schro¨dinger equation with a scalar potential . . . . . . . . . . . . . . . . . . 72 6.5 Uniqueness questions of the correspondence principle . . . . . . . . . . . . . 73 7 Charged particle in an electro-magnetic field 74 7.1 Gauge transformations and gauge invariance . . . . . . . . . . . . . . . . . . 74 7.2 Constant Magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.2.1 Map onto harmonic oscillators . . . . . . . . . . . . . . . . . . . . . . 76 7.3 Landau Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.3.1 Complex variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3 7.4 The Aharonov-Bohm Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.4.1 The scattering Aharonov-Bohm effect . . . . . . . . . . . . . . . . . . 79 7.4.2 The bound state Aharonov-Bohm effect . . . . . . . . . . . . . . . . . 81 7.5 The Dirac magnetic monopole . . . . . . . . . . . . . . . . . . . . . . . . . . 83 8 Theory of Angular Momentum 86 8.1 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8.2 The Lie algebra of rotations – angular momentum . . . . . . . . . . . . . . . 88 8.3 General Groups and their Representations . . . . . . . . . . . . . . . . . . . 88 8.4 General Lie Algebras and their Representations . . . . . . . . . . . . . . . . 89 8.5 Direct sum and reducibility of representations . . . . . . . . . . . . . . . . . 90 8.6 The irreducible representations of angular momentum . . . . . . . . . . . . . 90 8.7 Addition of two spin 1/2 angular momenta . . . . . . . . . . . . . . . . . . . 92 8.8 Addition of a spin 1/2 with a general angular momentum . . . . . . . . . . . 94 8.9 Addition of two general angular momenta . . . . . . . . . . . . . . . . . . . 96 8.10 Systematics of Clebsch-Gordan coefficients . . . . . . . . . . . . . . . . . . . 97 8.11 Spin Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 8.12 The Ising Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 8.13 Solution of the 1-dimensional Ising Model . . . . . . . . . . . . . . . . . . . 100 8.14 Ordered versus disordered phases . . . . . . . . . . . . . . . . . . . . . . . . 102 9 Symmetries in Quantum Physics 104 9.1 Symmetries in classical mechanics . . . . . . . . . . . . . . . . . . . . . . . . 104 9.2 Noether’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 9.3 Group and Lie algebra structure of classical symmetries . . . . . . . . . . . . 107 9.4 Symmetries in Quantum Physics . . . . . . . . . . . . . . . . . . . . . . . . . 108 9.5 Examples of quantum symmetries . . . . . . . . . . . . . . . . . . . . . . . . 110 9.6 Symmetries of the multi-dimensional harmonic oscillator . . . . . . . . . . . 110 9.6.1 The orthogonal group SO(N) . . . . . . . . . . . . . . . . . . . . . . 111 9.6.2 The unitary groups U(N) and SU(N) . . . . . . . . . . . . . . . . . 113 9.6.3 The group Sp(2N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 9.7 Selection rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 9.8 Vector Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 9.9 Selection rules for vector observables . . . . . . . . . . . . . . . . . . . . . . 118 9.10 Tensor Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.11 P, C, and T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 10 Bound State Perturbation Theory 124 10.1 The validity of perturbation theory . . . . . . . . . . . . . . . . . . . . . . . 125 10.1.1 Smallness of the coupling . . . . . . . . . . . . . . . . . . . . . . . . . 125 4 10.1.2 Convergence of the expansion for finite-dimensional systems . . . . . 126 10.1.3 The asymptotic nature of the expansion for infinite dimensional systems126 10.2 Non-degenerate perturbation theory . . . . . . . . . . . . . . . . . . . . . . . 128 10.3 Some linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 10.4 The Stark effect for the ground state of the Hydrogen atom . . . . . . . . . . 132 10.5 Excited states and degenerate perturbation theory . . . . . . . . . . . . . . . 133 10.6 The Zeeman effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 10.7 Spin orbit coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 10.8 General development of degenerate perturbation theory . . . . . . . . . . . . 135 10.8.1 Solution to first order . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 10.8.2 Solution to second order . . . . . . . . . . . . . . . . . . . . . . . . . 137 10.9 Periodic potentials and the formation of band structure . . . . . . . . . . . . 138 10.10Level Crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 11 External Magnetic Field Problems 142 11.1 Landau levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 11.2 Complex variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 11.3 Calculation of the density of states in each Landau level . . . . . . . . . . . 145 11.4 The classical Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 11.5 The quantum Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 12 Scattering Theory 151 12.1 Potential Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 12.2 The iε prescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 12.3 The free particle propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 12.4 The Lippmann-Schwinger equation in position space . . . . . . . . . . . . . . 155 12.5 Short range versus long range V and massless particles . . . . . . . . . . . . 156 12.6 The wave-function solution far from the target . . . . . . . . . . . . . . . . . 157 12.7 Calculation of the cross section . . . . . . . . . . . . . . . . . . . . . . . . . 157 12.8 The Born approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 12.8.1 The case of the Coulomb potential . . . . . . . . . . . . . . . . . . . 160 12.8.2 The case of the Yukawa potential . . . . . . . . . . . . . . . . . . . . 161 12.9 The optical Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 12.10Spherical potentials and partial wave expansion . . . . . . . . . . . . . . . . 162 12.10.1Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 12.10.2Partial wave expansion of wave functions . . . . . . . . . . . . . . . . 164 12.10.3Calculating the radial Green function . . . . . . . . . . . . . . . . . . 165 12.11Phase shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 12.12The example of a hard sphere . . . . . . . . . . . . . . . . . . . . . . . . . . 168 12.13The hard spherical shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5 12.14Resonance scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 13 Time-dependent Processes 173 13.1 Magnetic spin resonance and driven two-state systems . . . . . . . . . . . . . 173 13.2 The interaction picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 13.3 Time-dependent perturbation theory . . . . . . . . . . . . . . . . . . . . . . 177 13.4 Switching on an interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 13.5 Sinusoidal perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 14 Path Integral Formulation of Quantum Mechanics 181 14.1 The time-evolution operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 14.2 The evolution operator for quantum mechanical systems . . . . . . . . . . . 182 14.3 The evolution operator for a free massive particle . . . . . . . . . . . . . . . 183 14.4 Derivation of the path integral . . . . . . . . . . . . . . . . . . . . . . . . . . 184 14.5 Integrating out the canonical momentum p . . . . . . . . . . . . . . . . . . . 187 14.6 Dominant paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 14.7 Stationary phase approximation . . . . . . . . . . . . . . . . . . . . . . . . . 188 14.8 Gaussian fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 14.9 Gaussian integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 14.10Evaluating the contribution of Gaussian fluctuations . . . . . . . . . . . . . 191 15 Applications and Examples of Path Integrals 193 15.1 Path integral calculation for the harmonic oscillator . . . . . . . . . . . . . . 193 15.2 The Aharonov-Bohm Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 15.3 Imaginary time path Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 197 15.4 Quantum Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 198 15.5 Path integral formulation of quantum statistical mechanics . . . . . . . . . . 199 15.6 Classical Statistical Mechanics as the high temperature limit . . . . . . . . . 200 16 Mixtures and Statistical Entropy 202 16.1 Polarized versus unpolarized beams . . . . . . . . . . . . . . . . . . . . . . . 202 16.2 The Density Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 16.2.1 Ensemble averages of expectation values in mixtures . . . . . . . . . . 205 16.2.2 Time evolution of the density operator . . . . . . . . . . . . . . . . . 205 16.3 Example of the two-state system . . . . . . . . . . . . . . . . . . . . . . . . 205 16.4 Non-uniqueness of state preparation . . . . . . . . . . . . . . . . . . . . . . . 207 16.5 Quantum Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 208 16.5.1 Generalized equilibrium ensembles . . . . . . . . . . . . . . . . . . . . 209 16.6 Classical information and Shannon entropy . . . . . . . . . . . . . . . . . . 210 16.7 Quantum statistical entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6 16.7.1 Density matrix for a subsystem . . . . . . . . . . . . . . . . . . . . . 213 16.7.2 Example of relations between density matrices of subsystems . . . . . 213 16.7.3 Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 16.7.4 Completing the proof of subadditivity . . . . . . . . . . . . . . . . . . 216 16.8 Examples of the use of statistical entropy . . . . . . . . . . . . . . . . . . . . 217 16.8.1 Second law of thermodynamics . . . . . . . . . . . . . . . . . . . . . 218 16.8.2 Entropy resulting from coarse graining . . . . . . . . . . . . . . . . . 218 17 Entanglement, EPR, and Bell’s inequalities 219 17.1 Entangled States for two spin 1/2 . . . . . . . . . . . . . . . . . . . . . . . 219 17.2 Entangled states from non-entangled states . . . . . . . . . . . . . . . . . . . 221 17.3 The Schmidt purification theorem . . . . . . . . . . . . . . . . . . . . . . . . 222 17.4 Generalized description of entangled states . . . . . . . . . . . . . . . . . . . 223 17.5 Entanglement entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 17.6 The two-state system once more . . . . . . . . . . . . . . . . . . . . . . . . . 224 17.7 Entanglement in the EPR paradox . . . . . . . . . . . . . . . . . . . . . . . 225 17.8 Einstein’s locality principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 17.9 Bell’s inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 17.10Quantum predictions for Bell’s inequalities . . . . . . . . . . . . . . . . . . . 229 17.11Three particle entangled states . . . . . . . . . . . . . . . . . . . . . . . . . . 232 18 Introductory Remarks on Quantized Fields 234 18.1 Relativity and quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . 235 18.2 Why Quantum Field Theory ? . . . . . . . . . . . . . . . . . . . . . . . . . . 235 18.3 Further conceptual changes required by relativity . . . . . . . . . . . . . . . 236 18.4 Some History and present significance of QFT . . . . . . . . . . . . . . . . . 237 19 Quantization of the Free Electro-magnetic Field 239 19.1 Classical Maxwell theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 19.2 Fourrier modes and radiation oscillators . . . . . . . . . . . . . . . . . . . . 241 19.3 The Hamiltonian in terms of radiation oscillators . . . . . . . . . . . . . . . 242 19.4 Momentum in terms of radiation oscillators . . . . . . . . . . . . . . . . . . . 245 19.5 Canonical quantization of electro-magnetic fields . . . . . . . . . . . . . . . . 245 19.6 Photons – the Hilbert space of states . . . . . . . . . . . . . . . . . . . . . . 246 19.6.1 The ground state or vacuum . . . . . . . . . . . . . . . . . . . . . . . 246 19.6.2 One-photon states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 19.6.3 Multi-photon states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 19.7 Bose-Einstein and Fermi-Dirac statistics . . . . . . . . . . . . . . . . . . . . 249 19.8 The photon spin and helicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 19.9 The Casimir Effect on parallel plates . . . . . . . . . . . . . . . . . . . . . . 253 7 20 Photon Emission and Absorption 257 20.1 Setting up the general problem of photon emission/absorption . . . . . . . . 257 20.2 Single Photon Emission/Absorption . . . . . . . . . . . . . . . . . . . . . . . 258 20.3 Application to the decay rate of 2p state of atomic Hydrogen . . . . . . . . . 261 20.4 Absorption and emission of photons in a cavity . . . . . . . . . . . . . . . . 261 20.5 Black-body radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 21 Relativistic Field Equations 266 21.1 A brief review of special relativity . . . . . . . . . . . . . . . . . . . . . . . . 266 21.2 Lorentz vector and tensor notation . . . . . . . . . . . . . . . . . . . . . . . 268 21.3 General Lorentz vectors and tensors . . . . . . . . . . . . . . . . . . . . . . . 269 21.3.1 Contravariant tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 21.3.2 Covariant tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 21.3.3 Contraction and trace . . . . . . . . . . . . . . . . . . . . . . . . . . 271 21.4 Classical relativistic kinematics and dynamics . . . . . . . . . . . . . . . . . 271 21.5 Particle collider versus fixed target experiments . . . . . . . . . . . . . . . . 272 21.6 A physical application of time dilation . . . . . . . . . . . . . . . . . . . . . 273 21.7 Relativistic invariance of the wave equation . . . . . . . . . . . . . . . . . . . 273 21.8 Relativistic invariance of Maxwell equations . . . . . . . . . . . . . . . . . . 274 21.8.1 The gauge field and field strength . . . . . . . . . . . . . . . . . . . . 274 21.8.2 Maxwell’s equations in Lorentz covariant form . . . . . . . . . . . . . 275 21.9 Structure of the Poincar´e and Lorentz algebras . . . . . . . . . . . . . . . . . 277 21.10Representations of the Lorentz algebra . . . . . . . . . . . . . . . . . . . . . 279 22 The Dirac Field and the Dirac Equation 282 22.1 The Dirac-Clifford algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 22.2 Explicit representation of the Dirac algebra . . . . . . . . . . . . . . . . . . . 284 22.3 Action of Lorentz transformations on γ-matrices . . . . . . . . . . . . . . . . 285 22.4 The Dirac equation and its relativistic invariance . . . . . . . . . . . . . . . 286 22.5 Elementary solutions to the free Dirac equation . . . . . . . . . . . . . . . . 288 22.6 The conserved current of fermion number . . . . . . . . . . . . . . . . . . . . 289 22.7 The free Dirac action and Hamiltonian . . . . . . . . . . . . . . . . . . . . . 291 22.8 Coupling to the electro-magnetic field . . . . . . . . . . . . . . . . . . . . . . 291 23 Quantization of the Dirac Field 293 23.1 The basic free field solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 23.2 Spinor Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 23.3 Evaluation of the electric charge operator and Hamiltonian . . . . . . . . . . 297 23.4 Quantization of fermion oscillators . . . . . . . . . . . . . . . . . . . . . . . 298 23.5 Canonical anti-commutation relations for the Dirac field . . . . . . . . . . . 298 8 23.6 The fermion propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 23.7 The concept of vacuum polarization . . . . . . . . . . . . . . . . . . . . . . . 300 Acknowledgements It is a pleasure to thank John Estes, Yu Guo, Robert Maloney, Antonio Russo, Josh Samani, and Jie Zhang for suggesting various useful corrections and clarifications. 9 Bibliography Course textbook Modern Quantum Mechanics, J.J. Sakurai, Revised Edition, Addison-Wesley (1994) • Reference on Classical Mechanics Classical Mechanics, H. Goldstein, Addison Wesley, (1980); • References on undergraduate Quantum Mechanics Introduction to Quantum Mechanics, D.J. Griffiths, Pearson Prentice Hall (2005); • The Feynman Lectures of Physics, Vol III, R.P Feynman, R.B. Leighton and M. Sands, • Addison-Wesley, (1965); General References on Quantum Mechanics Quantum Physics, M. Le Bellac, Cambridge University Press (2006); • Principles of Quantum Mechanics, R. Shankar, Plenum (1980); • Quantum Mechanics, E. Abers, Pearson Prentice Hall (2004); • Classics The Principles of Quantum Mechanics, P.A.M. Dirac, Oxford (1968); • Quantum Mechanics, Non-relativistic Theory, Course in Theoretical Physics, Vol 3, • L. Landau and E. Lifschitz, Butterworth Heinemann, (2004); Quantum Mechanics, C. Cohen-Tannoudji, B. Diu and F. Laloe, I & II, Wiley (1977), • [a very thorough classic, with extensive applications]; Quantum Mechanics and Path Integrals, R.P. Feynman and A. Hibbs, MacGraw Hill; • Quantum Mechanics, J. Schwinger, Springer Verlag (2001); • Introduction to Quantum Mechanics, Vol I, K. Gottfried, Benjamin (1966); • Historical Developments The Conceptual Development of Quantum Mechanics, Max Jammer, McGraw Hill, • (1966), [a superb treatise on the foundations of quantum mechanics]; Inward Bound; On Matter and Forces in the Physical World, A. Pais, Oxford, (1986); • 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.