ebook img

Quantum Phase Transitions and the ν=5/2 Fractional Hall State in Wide Quantum Wells PDF

0.48 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Phase Transitions and the ν=5/2 Fractional Hall State in Wide Quantum Wells

Quantum PhaseTransitions andthe ν = 5/2 FractionalHallState inWideQuantum Wells Z. Papic´1, F. D. M. Haldane1, and E. H. Rezayi2 1 Department of Physics, Princeton University, Princeton, NJ 08544 and 2 Department of Physics, CaliforniaState University, LosAngeles, California 90032, USA (Dated:October1,2012) Westudythenatureoftheν =5/2quantumHallstateinwidequantumwellsunderthemixingofelectronic subbandsandLandaulevels. WeintroduceageneralmethodtoanalyzetheMoore-ReadPfaffianstateandits particle-holeconjugate, theanti-Pfaffian, under periodicboundary conditions ina“quartered” Brillouinzone schemecontainingbothevenandoddnumbersofelectrons. Weexaminetherotationalquantumnumberson 2 thetorus,andshowspontaneousbreakingoftheparticle-holesymmetrycanbeobservedinfinite-sizesystems. 1 Inthepresenceofelectronic-subbandandLandau-levelmixingtheparticle-holesymmetryisbrokeninsucha 0 waythattheanti-Pfaffianisunambiguouslyfavored,andbecomesmorerobustinthevicinityofatransitionto 2 thecompressiblephase,inagreementwithrecentexperiments. p e PACSnumbers:63.22.-m,87.10.-e,63.20.Pw S 8 The quantized Hall state at the ν = 5/2 Landau level Abelian statistics, and have providedadditionalinsights into 2 (LL) filling factor [1] has been the subject of significant re- the nature of the ground state. In particular, the discovery centinterestduetoastrongsuspicion,withconsiderablesup- ofthecounter-propagatingmode[25]isconsistentonlywith ] l portfromthenumericalcalculations[2–5],thatitisdescribed APf. e - by the Moore-Read “Pfaffian” (Pf) state [6]. This incom- r Atthesametime,otherexperimentshavefocusedonprob- st pressible quantum fluid, which is a prototype state for non- ing the stability of ν = 5/2 by driving the transitions from Abelian exchangestatistics [6, 7], is foundin the vicinity of . theincompressibletocompressiblephases,suchastheFermi t a the phase boundary with compressible phases characterized liquid-like state [26, 27] and the anisotropic, stripe and ne- m bystripeorderandFermi-liquid-likebehavior[3]. Generally, matic phases [3, 28]. This was done by tilting the mag- - the incompressiblefluidsof the fractionalquantizedHall ef- netic field [28], and by tuning the density in wide quantum d fect (FQHE) [8–10] possess protected gapless edge modes, n well (WQW) samples [29, 30]. In the latter case, it was re- andgappedbulkexcitationswhichcarryfractionalchargeand o centlynoticed[30]thatthequantizedν = 5/2statebecomes obeyfractionalstatistics[6,11]. Theseattributes–quantiza- c strongerinthevicinityofatransitiontotheFermiliquid-like [ tion,fractionalization,andprotection–representthehallmark phase. oftopologicalphases[12]. Inthecaseofnon-Abelianstates, 1 thedegeneracyofthequasi-particlestatesmaybesuitableto In this Letter we introduce a new method to study the v 6 implementa“fault-tolerant”quantumcomputation[13]. physics of the Moore-Read state and its P-H conjugate. We 0 consideracompacttorusgeometry[31,32]witha“quartered” The Moore-Readstate, thoughdefinedin a half-filled LL, 6 many-bodyBrillouin zone for both even and odd number of 6 is not invariantunder the particle-hole(P-H) transformation, electronsN . RegardlessoftheparityofN , fortheMoore- e e . and therefore its P-H conjugate partner – the “anti-Pfaffian” 9 Read3-bodyHamiltonianweobtainazero-energyandzero- (APf) [14] – emerged as a competing candidate to describe 0 momentumground-state,withbosonic(“magneto-roton”)and 2 the ground state of ν = 5/2. In experiment, either Pf or fermionic (“neutral fermion” [33]) collective modes at fixed 1 APf is realized, depending on the explicit form of the P-H N . This is in stark contrast e.g. with the spherical geom- : symmetry-breakingfields (e.g., LL mixing [15–17]). In the e v etry [34], wherethe zero-energyground-stateonly existsfor Xi absence of those, the true ground state is selected by spon- evenNe,andthefermionicmodecanonlybeobtainedforodd taneous P-H symmetry breaking. A similar outcome should N [33].Theessentialphysicalsimilarityoftheevenandodd r be reproducible in finite-size calculations, which have been e a N cases on the torus enablesus to restrict to the latter case e knowntocaptureremarkablywellthefundamentalaspectsof whenPfandAPfcanbefurtherclassifiedbytheirinvariance FQHE physics[10]. However,fortechnicalreasons(see be- underdiscreterotationsinhighsymmetryBravaislattices.For low),thisneveroccursforanevennumberofelectronswhich specialoddvaluesofN werecoverspontaneousP-Hsymme- e hasbeentheassumptionofmoststudiestodate[18,19]. trybreakinginfinitesystemsasPfandAPfacquiredifferent AlthoughPf and APf have identical non-Abelianbraiding angular momenta compatible with periodic boundary condi- propertiesinthebulk,theyrepresentdistinctphasesofmatter tions (PBCs), and become orthogonalto each other in finite as reflected e.g., in their edge physics — a signature of the systems. This formalism is applied to a realistic model of a underlyingtopologicalorder[12]. Anumberofrecentexper- wide quantum well with two subbands, S1 (symmetric sub- imentshavefocusedonmeasuringthequasiparticlechargeat bandwithn=1LLform-factor)andA0(antisymmetricsub- ν = 5/2[20–22],andondetectingthenon-Abelianstatistics band with n = 0 LL form-factor), where P-H symmetry is using edge-tunnelinginterferometry[23, 24]. These probes, brokenexplicitlybythemixingofelectronicsubbands/LLsas whilenotdefinitiveinallregards,areconsistentwiththenon- aresultoftuningthedensity[30]. WeidentifyAPfastheone 2 describingthegroundstateinthesecircumstances,andshow thatitsgapincreasespriortothetransitiontothecompressible phase,inagreementwithexperiments[30]. WeconsiderNeelectronsinafundamentaldomainL1×L2 subject to magnetic field Bzˆ = ∇ × A. An operator that translates a single electron and commuteswith the Hamilto- nianis themagnetictranslationoperatorwhichobeysa non- commutative algebra, leading to the quantization of the flux NΦ threadingthe system, zˆ·(L1 ×L2) = 2πℓ2BNΦ, where ℓB = p~/eB is the magnetic length. In a many-bodysys- tem, symmetry classification is achieved by the help of the FIG.1.(Coloronline)(a)Anexampleofasquaredmany-bodyBril- emergentmany-bodytranslationoperators[32],whichcanbe louinzone(opencircles),andthemappingtoa“quartered”Brillouin factorizedintoacenterofmassandarelativepart. Theaction zone(blackcircles)forevenNe.Redcirclesdenotesectorsthatmap oftheformerproducesacharacteristicdegeneracyequaltoq, tothezeromomentumk = 0. (b)EnergyspectrumoftheMoore- whereNe =pN,NΦ =qN,andN iscanonicallyassumedto Read3-bodyHamiltonianinaquarteredBrillouinzoneforNe =14 bethegreatestcommondivisorofNeandNΦsuchthatpand andNe =13(inset)particles. q are coprime. The eigenvalueof the relativetranslation op- eratoris a many-bodymomentumk [32] thatfully classifies the spectrum in the Brillouin zone N ×N, with the excep- obtainthreecopiesofthebosonicmodeandasinglecopyof tionofhighsymmetrypointswherediscretesymmetriesmay the fermionic one. In the odd number case (Ne = 13), the produceadditionaldegeneracies,asweexplainbelow. multiplicitiesareinterchanged[36]. Contrarytosphericalge- For the outlined algebraic derivation it is not essential ometrywherespectrafordifferentparticlenumbershavetobe that p,q be coprime numbers. In fact, enforcing this con- superimposedonthe sameplottoresolvethetwo modes,on dition might hide the important physical features of a FQH thetorusbothmodesareobtainedforafixedsystemsizeNe. state. ThisoccursfortheMoore-Readstate whichpossesses AdditionaladvantageofPBCsisthatonecanaccessaquasi- a pairing structure revealed in its fundamental root pattern continuumof the momentak, as opposedto a much smaller 110011001100..., that defines the clustering properties on subset of angular momenta on the sphere. This is achieved genus-0 surfaces [35]. The correspondingfilling factor ν = by adiabatic variation of the shape of the unit cell in terms 1/2shouldbeviewedasν =2/4becausetherootpatternad- ofits aspectratio |L1|/|L2| orthe anglebetweenvectorsL1 mitstwoparticlesineachfourconsecutiveorbitals. Toincor- andL2,subjecttoaconstraintthatthearea|L1×L2|remains poratethisclusteringcondition,weneedtomapthewavevec- fixedandequalto2πℓ2BNΦ. InFig.1wesettheratioequalto torsonto a “quartered”Brillouin zoneN˜ ×N˜ [36]. We can unity,andvarytheanglebetweenthesquareandthehexagon. viewthequarteredBrillouinzoneasaresultof“folding”the Usinga quarteredBrillouinzone, we canalso directlyad- originalN ×N zone,Fig.1(a). ForN even,thezonecorner dressthephasetransitionbetweentheMoore-Readstate and andmidpointsof the zonesides all mapto k = 0 point(red thecompositeFermiliquid(CFL).Sphericalgeometryisnot points in Fig. 1(a)). These wavevectors also define the sec- adequateforthis purposebecause the two states have differ- torsoftheHilbertspacewhereathree-folddegenerateMoore- ent“shifts” [37]. To capturethe transition, we study the en- Readgroundstateisobtained[6]. Moore-ReadparentHamil- ergyspectrumofaHamiltonianthatinterpolatesbetweenthe tonian also possesses a zero-energy ground state for an odd model 3-body Hamiltonian and the n = 0 LL Coulomb in- numberof electrons, whichcorrespondsto a single unpaired teraction,λH3b+(1−λ)HC. InaquarteredBrillouinzone, electronwith k = 0 [7]. Inthiscase, thefoldingstill “com- the spectra for even and odd Ne are strikingly similar, and pactifies” the original Brillouin zone, but the k = 0 sector data in Fig. 2 corresponds to Ne = 11 which is also stud- remainsthesameasbeforethefolding.Thus,inthequartered ied in a differentmodelbelow. The neutral fermion and the Brilloiunzone,theground-statesoftheMoore-ReadHamilto- magneto-rotonmodesbecomesignificantlydistortedanddif- nianareinvariablyobtainedinthek=0sectoroftheHilbert ficult to identify for λ < 1, neverthelessone can track their space,astheyshouldbeforanincompressibleliquid,andthe evolution until the eventual collapse of the gap for λ = 0. 3-folddegeneratestatesareallowedtomix. At this point the ground state moves from k = 0 to some The virtue of a quarteredBrillouin zone becomesobvious k ∼ ℓ−1,andthesystemundergoesasecond-ordertransition B whenthefullenergyspectrumisstudiedasafunctionofmo- tothecompressiblephase.Incontrast,forn=1LLCoulomb mentum, Fig. 1(b). Using the conventionaldefinition of the interaction,similar calculationdoesnotlead tothe gapclos- Brillouinzone,thereisnoobviousstructurein thelow-lying ingforanyλ. AdiabaticvariationofPBCsalsoenablesoneto excitationspectrumofthe Moore-Read3-bodyHamiltonian. calculatee.g. theHallviscosity,whichisexpectedtodiverge However, if the same spectrum is replotted in a quartered at λ = 0 point. Regime of small λ might display an inter- zone, it reveals a clear bosonic mode (the “magneto-roton”) esting crossoverbetween type-I and type-IIsuperconducting and a fermionic mode (“neutral fermion”) [33]. Because of behavior[38]. the Brillouin zone folding, in the even case (N = 14) we InordertoaddressthecompetitionbetweenPfandAPffor e 3 theydescribethegroundstateonlyincaseswherePfandAPf have ∆M 6= 0. Evidently, the rotational quantum numbers of the doubletmatch those of Pf and APf. There will be no spontaneousbreakingoftheP-Hsymmetryintheabsenceof such degeneracies until the thermodynamiclimit is reached. Achievingthispropertyforfinitesizesmakesthecomparison oftheexactgroundstatewithPforAPfmuchcleanerthanthe caseofevenN ,forexample. Asweshowbelow,LLmixing e splitsthedoubletsinsuchawaythateachmemberhasafinite overlapwitheitherPforAPf,whilehavingzerooverlapwith theother. We illustrate the ideas above on a model of the WQW in whichelectronscanpopulatetwo“active”subbandswithLL indicesn = 0andn = 1[43]. WerefertotheselevelsasA0 andS1,whereS,Astandsforthewavefunctionintheperpen- FIG.2. (Coloronline)TransitionbetweentheMoore-Readandthe dicularz ∈[0,w]direction,wbeingthewidthofthewell.For CFLstate.EnergyspectrumoftheHamiltonianλH3b+(1−λ)HC simplicity,weassumereflectionsymmetryaroundz = w/2, isplottedasafunctionofmomentumforseveral λ,illustratingthe andthetwosubbandsare givenbysymmetric/antisymmetric collapseoftheneutralmodearoundk∼ℓ−1. B infinite square well wavefunctionsϕS = p2/wsin(πz/w), ϕA =p2/wsin(2πz/w). Theremainingsubbandsareeither completelyfilledorcompletelyempty,andexcitationstothem thegroundstateofgeneric(2-body)interactions,itisessential are forbidden. The energy splitting between the subbands, toconsiderallpossiblesymmetriesoftheHamiltonianathalf ∆SAS, can be realistically tuned by electrostatic gates [30], filling.Particularly,thetwosymmetriesofinterestherearethe butin ourcalculationitis assumedto bean independentpa- P-H conjugationτph, and discrete rotations compatible with rameter.Thismodelisexpectedtoprovidearealisticdescrip- PBCs[39,40]. Thefirstisrepresentedbyananti-unitaryop- tionofanumberofrecentexperimentsontheWQWswhere eratorwhoseeffectissimilartothewell-knowncaseoftime- FQHstateswereprobedbytuningtheeffectiveinteractionvia reversalsymmetry[41]. Inthe presenceofbothsymmetries, subband/LLmixing. Inparticular, we focuson the ν = 5/2 extra (isolated) degeracies may occur which belong to con- consideringahalf-filledS1levelmixingwithanA0level. It jugateorco-representationsofdiscreterotations[32, 41]. In isassumedthattheelectronspinisfullypolarized[2,44–47]. thecaseofevenNe,rotationalsymmetrydoesnotleadtoany InFig.3(a)we plottheneutralgapandmeanvalueofthe aFdodritsioomnaeleqxucaintetudmstnautemsbweirtshfokrt=he0g,roτup2nhd=sta−te1ataνnd=th5e/s2e,. pgsroeuudnodssptianteopfoerraNtoer S=z 1=0 p12aPrtici(lecs†S.,icWS,ie−setc†Aw,i/cℓAB,i)=in2t.h7e, followingKramer’stheorem,arealldoublydegerate. Onthe which roughly agrees with the experimental width [28, 30]. otherhand,foroddNe andk=0, τp2h = 1andonlyisolated When ∆SAS is large, excitations to A0 level are costly, and degeneraciesarepossible. Thegroundstateinthiscaseisei- the groundstate is fullypolarizedin S1 levelanditis of the theruniqueoradoublet. Foranygeometryotherthanhexag- samenatureastheonethatisusuallyobservedinwidesam- onal, the ground state is a singlet. For hexagonalgeometry, ples. As ∆SAS becomes smaller, the difference of n = 0 thegroundstateisalsoasingletifthenumberofelectronsis andn = 1 LLformfactorsmakesitincreasiblyfavorableto given by Ne = 6m+1, where m ∈ Z. For other Ne, the promoteparticlesintoA0levelandreducethecorrelationen- groundstateisadoublet[42]. ergy. Eventually,all particlesmigrateto A0 subband,where To understand these trends for generic Hamiltonians it is they form a composite Fermi liquid; as shown in Fig. 3(a), helpful to consider the rotational properties of Pf and APf thishappensslightlybeforetheactualcoincidenceofthetwo model states. On the torus with n-fold point symmetry, the subbands. Thestep-likebehaviorofhS isuggeststhetransi- z angularmomentumof APf, measuredrelativeto Pf, is given tion to be very sharp, and we find it to be more affected by by ∆M = 2N (mod n), where N is the number of the difference in LL (rather than the subband) form-factors. pair pair pairedelectrons. Forn = 2orn = 4(squareorlowersym- Rightbeforethetransition,excitationsfromS1toA0leadto metry), ∆M = 0 since N is always even. Thus there is anincreaseoftheneutralgapofthesystem,asmeasuredex- pair nosymmetryreasonforPfandAPf(beingtheeigenstatesof perimentally [30]. We believe the increase of the gap to be differentHamiltonians)tobeorthogonal. Ontheotherhand, an intrinsic feature of the system, but limitationson the sys- for n = 6, ∆M 6= 0 if N 6= 6m+1, and the two states temsizesattainablebyexactdiagonalizationpreventusfrom e arenecessarilyorthogonal. Itis underpreciselythesecondi- performingproperfinite-sizescalingofthegap. tionsthatthedoubletgroundstatesareobserved.Theseseem- Finally, we investigate the nature of the ground state be- inglyunrelatedeventsareanotherconfirmationthatinthecase forethetransitiontothecompressiblephase. InFig.3(b)we oftheCoulombinteractionsthesystemisintheMoore-Read comparetheN = 10electrongroundstate (projectedtoS1 e phase. Therearealwaysdoubletspresentinthespectrum,but level)withthePfandAPfwavefunctionsdefinedonahexag- 4 FIG.3. (Coloronline)(a)NeutralgapandmeanvalueofthepseudospinSz forNe = 10particlesathalffillinginaWQW(w/ℓB = 2.7). Transition is driven by changing ∆SAS, and relative position of the electronic subbands is schematically shown in the inset. (b) Overlap betweentheexactNe =10groundstate(projectedontoS1subband)andthePf/APfwavefunctions.Inthetransitionregion(∆SAS≈0.028) APfbecomesfavored.(c)Energyspectrumforinfinite∆SAS(blackdiamonds)withanexactdoubletatk=0,andthesplittingofthedoublet when∆SAS isreduced (redtriangles). (d)Sameasin(b) butfor Ne = 11, when Pfand APfaremutually orthogonal. ∆SAS breaks PH symmetryandunambiguouslyselectsAPf(95%overlap)overPf(zerooverlap).InsetshowstheeffectofvaryingtheV1pseudopotential. onalunitcell. Atlarge∆SAS,thePHsymmetryispreserved, particular Y. Liu and M. Shayegan. ZP would like to thank andPf/APfhaveidenticaloverlapswiththeexactstate. Inthe A. Sterdyniak, N. Regnault, and B.A. Bernevig for useful transition region, PH symmetry is lifted, and APf overlap is comments. This work was supported by DOE grant DE- growingwhile thatof the Pf is decreasing. However,Pf and SC0002140. APf have a signicant overlap with each other for N = 10 e particles [17]. To avoid this problem, we instead consider N = 11case,whendiscretesymmetryforcesPfandAPfto e be orthogonal. Atthe same time, the Coulombgroundstate, [1] R.Willettetal.,Phys.Rev.Lett.59,1776(1987). whichis exactly twofolddegenerateforinfinite ∆SAS, splits [2] R.H.Morf,Phys.Rev.Lett.80,1505(1998). when∆SASisreduced(Fig.3(c)).ThesizeofthefullHilbert [3] E.H.RezayiandF.D.M.Haldane,Phys.Rev.Lett.84,4685 space for N = 11 is too large to be directly diagonalized, (2000). e so we follow the approachof limiting the number of excita- [4] M.Storni,R.H.Morf,andS.DasSarma,Phys.Rev.Lett.104, tionstothehighersubband[17]. Theconvergenceisfoundto 076803(2010). [5] H.Lu,S.DasSarma,andKwonPark,Phys.Rev.B82,201303 be rapid, andthe essentialpropertiesofthe groundstate and (2010). thetransitionpointcanbecapturedaccuratelybyallowingfor [6] G.MooreandN.Read,Nucl.Phys.B360,362(1991). notmorethan3electronsina highersubband. Theeffectof [7] N.ReadandD.Green,Phys.Rev.B61,10267(2000). a small amountof symmetry-breakingby ∆SAS is sufficient [8] D.C.Tsui,H.L.Stormer,andA.C.Gossard,Phys.Rev.Lett. to select APf with 95% overlapwith the groundstate, while 48,1559(1982). thePfoverlapdropstozero(Fig.3(d)). TheAPfoverlapcan [9] R.B.Laughlin,Phys.Rev.Lett.50,1395(1983). be increased further by varying the V1 pseudopotential in a [10] TheQuantumHallEffect,2nded.,editedbyR.E.Prangeand S.M.Girvin,Springer-Verlag,NewYork,1990. “SU(2)-invariant” manner [17] (Fig. 3(d), inset). These re- [11] D.Arovas,J.R.Schrieffer,andF.Wilczek,Phys.Rev.Lett.53, sults provideunambiguousevidencethat the groundstate of 722(1984);P.Bonderson,V.Gurarie,andC.Nayak,Phys.Rev. theWQWisdescribedbyAPf. B83,075303(2011). [12] X.-G.Wen,Int.J.Mod.Phys.B6,1711(1992). In summary, we have demonstrated that PBCs for special [13] A.Y.Kitaev, Ann. Phys.303, 2(2003); C.Nayaketal., Rev. finite systems with an appropriately defined Brillouin zone Mod.Phys.80,1083(2008). are essential for the study of the non-Abelian FQH states, [14] M.Levin,B.I.HalperinandB.Rosenow,Phys.Rev.Lett.99, theircollectiveexcitationspectra, andthe effectsof particle- 236806(2007);S.-S.Lee,S.Ryu,C.NayakandM.P.A.Fisher, hole symmetry breaking in WQWs under LL/subband mix- Phys.Rev.Lett.99,236807(2007). ing.AlthoughwehavepresentedresultsforthecaseofS1/A0 [15] W.BisharaandChetanNayak,Phys.Rev.B80,121302(2009). mixing, the more usual case of S1/S2 mixing (applicable to [16] A. Wo´js, Csaba To˝ke, and J. K. Jain, Phys. Rev. Lett. 105, 096802(2010). narrower quantum well samples) selects APf to describe the [17] E. H. Rezayi and S. H. Simon, Phys. Rev. Lett. 106, 116801 ground-state via the same mechanism. This conclusion is (2011). not affected by the mixing of even higher LLs (S3 and be- [18] M.R.Peterson,KwonPark,andS.DasSarma,Phys.Rev.Lett. yond). The sharpness of the transition and the “population 101,156803(2008). inversion”illustratedinFig.3mightberelevantfortheemer- [19] Michael R. Peterson, Th. Jolicoeur, and S. Das Sarma, Phys. genceoflowestLLphysicsunderextremetiltingofthemag- Rev.B78,155308(2008);Michael.R.Peterson,Th.Jolicoeur, neticfield[28]. andS.DasSarma,Phys.Rev.Lett.101,016807(2008). [20] I.Raduetal.,Science320,899(2008). Acknowledgements.Weacknowledgevaluablediscussions [21] M.Dolevetal.,Nature(London)452,829(2008). with J. Eisenstein, M. Levin, N. Read, S. H. Simon, and in [22] V.Venkatachalametal.,Nature469,185(2011). 5 [23] R.L.Willett,L.N.Pfeiffer,andK.W.West,Phys.Rev.B82, 246802(2008). 205301(2010). [36] F.D.M.Haldane(unpublished). [24] Sanghun An, P. Jiang, H. Choi, W. Kang, S. H. Simon, L. [37] X.G.WenandA.Zee,Phys.Rev.Lett.69,953(1992). N.Pfeiffer,K.W.West,andK.W.Baldwin,arXiv:1112.3400 [38] S. A. Parameswaran, S. A. Kivelson, S. L. Sondhi, and B. Z. (2011). Spivak,Phys.Rev.Lett.106,236801(2011). [25] A.Bidetal.,Nature466,585(2010). [39] Z.Papic´etal.,(unpublished). [26] E.RezayiandN.Read,Phys.Rev.Lett.72,900(1994). [40] Y.-L. Wu, N. Regnault, and B. Andrei Bernevig, [27] B.I.Halperin,P.A.Lee,andN.Read,Phys.Rev.B47,7312 arXiv:1206.5773(2012). (1993). [41] M.Tinkham,GroupTheoryandQuantumMechanics,McGraw [28] JingXiaetal.,Phys.Rev.Lett.105,176807(2010). Hill,NewYork(1964). [29] J.Nuebleretal.,Phys.Rev.Lett.108,046804(2012). [42] Insomecasesthedoubletisnotthegroundstatebutverynear [30] YangLiuetal.,Phys.Rev.Lett.107,176805(2011). it.Tweakingtheinteractionbyvaryingthethicknessofthe2D [31] D.Yoshioka,B.I.Halperin,andP.A.Lee,Phys.Rev.Lett.50, layerorvaryingthepseudo-potentialsmakesitthegroundstate. 1219(1983). [43] Z.Papic´etal.,Phys.Rev.B79,245325(2009). [32] F.D.M.Haldane,Phys.Rev.Lett.55,2095(1985). [44] A.E.Feiguinetal.,Phys.Rev.B79,115322(2009). [33] G. Mo¨ller, A. Wo´js, and N. R. Cooper, Phys. Rev. Lett. 107, [45] M.Sternetal.,arXiv:1201.3488(2012). 036803 (2011); P. Bonderson, A. E. Feiguin, and C. Nayak, [46] L.Tiemannetal.,arXiv:1201.3737(2012). Phys.Rev.Lett.106,186802(2011). [47] X.Linetal.,arXiv:1201.3648(2012). [34] F.D.M.Haldane,Phys.Rev.Lett.51,605(1983). [35] B. A. Bernevig and F. D. M Haldane, Phys. Rev. Lett. 100,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.