ebook img

Quantum Mechanics on the Macintosh®: With two Program Diskettes PDF

317 Pages·1991·21.128 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Mechanics on the Macintosh®: With two Program Diskettes

Diskette entnommen Aufstellung an Sonderstandort unter Buchsignatur Quantum Mechanics on the Macintosh" Siegmund Brandt Hans Dieter Dahmen Quantum Mechanics on the Macintosh" With two Program Diskettes, 69Figures, and 284Exercises Springer Science+Business Media, LLC Siegmund Brandt Hans DieterDahmen Physics Department Physics Department Siegen University Siegen University P.O. Box 101250 P.O. Box 101250 W-5900Siegen W-5900Siegen Germany Germany Library ofCongress Cataloging-in-PublicationData Brandt,Siegmund. QuantummechanicsontheMacintosh/S. Brandtand H.D.Dahmen. p. cm. Includes bibliographicalreferencesand indexes. I. Quantumtheory-Dataprocessing. 2. Interquanta(Computer program) 3. Macintosh(Computer)-Programming. I. Dahmen,Hans Dieter,1936- . II. Title. QCI74.17.D37B72 1991 530.1'2'02855369- dc20 91-17793 Printedonacid-free paper. ©1991 SpringerScience+BusinessMediaNewYork OriginallypublishedbySpringer-VerlagNewYork,Inc.in1991. SoftcoverreprintofthehardcoverIstedition1991 Allrights reserved.This work maynot betranslatedorcopied inwholeor inpartwithout the written permission ofthe publisherSpringerScience+BusinessMedia,LLC, except for brief excerpts in connection with reviews or scholarlyanalysis. Use in connection with anyform of inforrnation storage and retrieval, electronic adaptation,computersoftware, or bysimilar ordissimilar methodologynowknown orhereafterdevelopedisforbidden. The useofgeneraldescriptivenames, trade names,tradernarks,etc., inthispublication,evenif the former are not especially identified, is not to be taken as a sign that such names, as understoodbytheTradeMarksand MerchandiseMarksAct, mayaccordinglybeusedfreelyby anyone. The program on the enclosed diskettes is under copyright protection and may not be repro ducedwithoutwritten permissionfromSpringer-Verlag.Onecopyoftheprogrammaybemade asaback-up, but allothercopiesoffend copyrightlaw, The program waswritten in the programming language FORTRAN 77and compiled using a FORTRAN compilerbyLangnage SystemsCorp.Thisisacknowledgedbythe followingcopy right notice:Certainportionsofthissoftware are copyrighted byLanguage SystemsCorp.© 1988-1990LanguageSystemsCorp. Beforeusingtheprogram pleaseconsultthetechnical manualsprovidedbythemanufacturerof the computer-and ofany additional plug-in boards-to be used.The authorsand publisher accept no legal responsibilityfor any damage caused byimproper useofthe instructionsand program contained herein. Although the program has been tested with extreme care, wecan offernoformal guaranteethat itwillfunction correctly. Apple, Macintosh,ImageWriterand LaserWriterareregistered trademarksofApple Cornput er,lnc. POSTSCRIPTisaregisteredtrademarkofAdobe Systems, Inc. Camera-readycopyprepared bytheauthorsusingTEX. 987654321 ISBN 978-3-540-97627-1 ISBN 978-3-662-25102-7 (eBook) DOI 10.1007/978-3-662-25102-7 Preface Ever since we published our Picture Book ofQuantum Mechanics we have been askedtomake availabletheprogramswewrotetogeneratethecomputer graphicsthat illustratethe book. Wehave calledthe result INTERQUANTA (the Interactive Picture Program ofQuantum Mechanics), which we like to abbreviatefurther byIQ. IQconsistsoftheprogramproperandvariousadditionalfiles.Theseallow classroomdemonstrationsofprerecordedproblems withexplanatorytext and are an essential help in the organization of coursework. This book contains exercises worked out for a complete course we callA Computer Laboratory onQuantum Mechanics. Wehave tried outthecourse withgroups ofstudentsatSiegen University. Note that the students are not expected to have any knowledge of computer programming. The Laboratory is primarily meant to help students in their firstencounterwith quantummechanics, but wehave alsofound ituseful for students who are already familiar with the basics of the theory. In our expe rience theLaboratoryis best offered in parallel with alecture course such as Quantum Physics orIntroductory Quantum Mechanics. The program was originally publishedI for use on Personal Computers (IBM PC or PS/2). The program is coded in a machine-independent way in FORTRAN77. This makes iteasy to adapt ittoother computers butdifficult to take advantageofspecial machine-dependentfeatures. For this reason no use was made ofthe mouse. The original developmentofINTERQUANTA,supportedbyastudycon tract with IBM Germany, was done on an IBM 6150 RTPC computer. Itis a pleasure to acknowledge the generous help provided by IBM Germany, in particularwewould liketothank Dr.U.Groh forhiscompetenthelp with the computerhardwareand the systems software. At various stages ofthe project we were helped considerably by friends andstudents inSiegen. WewouldparticularlyliketothankMartinS.Brandt, Karin Dahmen, Helge Meinhard,Martin Schmidt, Tilo Stroh,Clemens Stup perich and Dieter Wiihner for their excellent work. We thank Wolfgang IS. Brandl and H. D. Dahmen, (1989): Quantum Mechanics on the Personal Com puter, Springer-Verlag (Berlin,Heidelberg, NewYork,London, Paris,Tokyo, HongKong, Barcelona),ISBN0-387-51541-0 v vi Preface Merzenich (Informatics department of Siegen University) for letting us use his system ofMacintoshcomputers and Dirk Diillmann (DESY) and Marcel Luis (Siegen) for help and advice. Inparticularwe want to thank Tilo Stroh who did most ofthe workneededto make this version ofIQrun. This book was typesetin our group with the typesetting programT}3X by Donald E. Knuth. Ourcomputergraphics coded asPOSTSCRIPT files were integratedintheT}3XfileusingaT}3X\specialcommand.The completefile wasthen printedby aPOSTSCRIPTdriver. Siegen,Germany SiegmundBrandt June 1991 Hans DieterDahmen Contents Preface v 1 Introduction 1 1.1 Interquanta ... .. ... 1 1.2 TheStructureofthisBook 2 1.3 TheComputerLaboratory 3 1.4 TheClassroomDemonstrations 3 1.5 Literature... . . .. . . . .. 4 2 Free ParticleMotion in One Dimension 5 2.1 PhysicalConcepts . . . . . . . . . . . . . . . . . 5 2.2 AFirstSessionwiththeComputer . . . . . . . . . 9 2.3 TheTimeDevelopmentofaGaussianWavePacket 13 2.4 TheSpectralFunctionofaGaussianWavePacket 15 2.5 TheWavePacketasaSumofHarmonicWaves 16 2.6 Exercises .... . . . . . . . . ... . .... . 19 3 BoundStatesinOne Dimension 22 3.1 PhysicalConcepts . . . . . . . . . . . . . . . . . . . . .. 22 3.2 EigenstatesintheInfinitelyDeepSquare-WellPotentialand intheHarmonic-OscillatorPotential . . . . . . . . . . . . . 29 3.3 EigenstatesintheStepPotential . . . . . . . . . . . . . .. 32 3.4 HarmonicParticleMotion . . . . . . . . . . . . . . . . . . 35 3.5 ParticleMotionintheInfinitelyDeepSquare-WellPotential . 36 3.6 Exercises .. .. . . .. . . . ....... .... ... . . 38 4 ScatteringinOne Dimension 44 4.1 PhysicalConcepts . . . . . . . . . . . . . . . . . . 44 4.2 StationaryScatteringStatesintheStepPotential . . . 58 4.3 ScatteringofaHarmonicWavebytheStepPotential 60 4.4 ScatteringofaWavePacketbytheStepPotential . 61 4.5 TransmissionandReflection.TheArgandDiagram 64 4.6 Exercises.. . . .. 66 4.7 AnalogiesinOptics 76 vii viii Contents 4.8 ReflectionandRefractionofStationaryElectromagneticWaves 80 4.9 ReflectionandRefractionofaHarmonicLightWave . ... 82 4.10 ScatteringofaWavePacketofLight . . . . . . . . . . . . . 83 4.11 Transmission,ReflectionandArgandDiagramforaLightWave 86 4.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . 88 5 ATwo-ParticleSystem: CoupledHarmonicOscillators 91 5.1 PhysicalConcepts . . . . . . . . . . . 91 5.2 StationaryStates . . . . . . . . . . . . 97 5.3 TimeDependenceofGlobalQuantities 97 5.4 JointProbabilityDensities 100 5.5 MarginalDistributions 102 5.6 Exercises .. .. . .... 103 6 Free ParticleMotioninThree Dimensions 109 6.1 PhysicalConcepts . . . . . . . . . . . . . . . . . 109 6.2 The3DHarmonicPlaneWave . . . . . . . . . . . 119 6.3 ThePlaneWaveDecomposedintoSphericalWaves 122 6.4 The3DGaussianWavePacket. . . . . . . . . . . 123 6.5 TheProbabilityEllipsoid . . . . . . . . . . . . . . 125 6.6 Angular-MomentumDecompositionofaWavePacket . 126 6.7 Exercises.. . .. .. . . . . .. ... . . . . .. .. 128 7 BoundStates inThree Dimensions 131 7.1 PhysicalConcepts . . . . . . . . . . . . . 131 7.2 RadialWaveFunctionsinSimplePotentials 141 7.3 RadialWaveFunctionsintheStepPotential 145 7.4 ProbabilityDensities. . . 147 7.5 HarmonicParticleMotion 151 7.6 Exercises . . .. ... .. 153 8 ScatteringinThree Dimensions 157 8.1 PhysicalConcepts . . . . . . . . . . . . . . . . 157 8.2 RadialWaveFunctions . . . . . . . . . . . . . . 165 8.3 StationaryWaveFunctionsandScatteredWaves . 168 8.4 DifferentialCrossSections . . . . . . . . . . . . 170 8.5 ScatteringAmplitude. PhaseShift. PartialandTotalCross Sections . . . . . . . . . . . . . . . . . . . . . . . . . .. 171 8.6 Exercises. . . .. . . .... .. . . .. . ... .. .... 175 9 SpecialFunctions ofMathematicalPhysics 180 9.1 BasicFormulae. . . . 180 9.2 HermitePolynomials . . . . . . . . . . 187 Conrenffi ix 9.3 EigenfunctionsoftheOne-DimensionalHarmonicOscillator 187 904 LegendrePolynomialsandAssociatedLegendreFunctions 188 9.5 SphericalHarmonics . . . . 192 9.6 BesselFunctions . . . . . . 192 9.7 SphericalBesselFunctions . 195 9.8 LaguerrePolynomials . . . 196 9.9 RadialEigenfunctionsoftheHarmonicOscillator 198 9.10 RadialEigenfunctionsoftheHydrogenAtom 200 9.11 SimpleFunctionsofaComplexVariable. 200 9.12 Exercises. . . . . . . . . . . . . . . . . . . 202 10 AdditionalMaterial and Hints for the Solution ofExercises 204 10.1 UnitsandOrdersofMagnitude. . . . . . . . . . . . . . 204 10.2 ArgandDiagramsandUnitarityforOne-DimensionalProblems211 10.3 HintsandAnswerstotheExercises 220 Appendix A ASystematicGuide toIQ 246 A.1 DialogBetweentheUserandIQ . 246 A.1.1 ASimpleExample . . . . 246 A.1.2 TheGeneralFormofCommands 249 A.1.3 TheDescriptorFile . . 250 A.1A TheDescriptor(Record) 253 A.I.5 ThePLOTCommand . 255 A.I.6 TheSTOPCommand . 256 A.I.7 HELP:TheCommandsHEandPH 256 A.2 CoordinateSystemsandTransformations 257 A.2.1 TheDifferentCoordinateSystems 257 A.2.2 DefiningtheTransformations . . 258 A.3 TheDifferentTypesofPlot 263 A.3.1 ChoosingaPlotType:TheCommandCH . 263 A.3.2 Cartesian3DPlots(Type0Plots) 263 A.3.3 Polar3DPlots(Type1Plots) . 264 A.304 2DPlots(Type2Plots) . . . . . 266 A.3.5 3DColumnPlots(Type3Plots) . 269 A.3.6 Special3DPlots(Type10Plots) . 270 Ao4 TheBackgroundinthePlots . . . . . . . 270 Ao4.1 BoxesandCoordinateAxes:TheCommandBO . 270 Ao4.2 Scales . . . . . . 271 Ao4.3 Arrows. . ... . .. ... . . . . . 273 Ao404 TextandNumbers . . . . . . . . . . 275 A.4.5 MathematicalSymbolsandFormulae 277

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.