SpringerBriefs in Physics Editorial Board Egor Babaev, University of Massachusetts, Boston, USA Malcolm Bremer, University of Bristol, UK Xavier Calmet, University of Sussex, UK Francesca Di Lodovico, Queen Mary University of London, London, UK Maarten Hoogerland, University of Auckland, New Zealand Eric Le Ru, Victoria University of Wellington, New Zealand James Overduin, Towson University, USA Vesselin Petkov, Concordia University, Canada Charles H.-T. Wang, The University of Aberdeen, UK Andrew Whitaker, Queen’s University Belfast, UK For furthervolumes: http://www.springer.com/series/8902 Roger Boudet Quantum Mechanics in the Geometry of Space–Time Elementary Theory 123 Roger Boudet Honorary Professor Université de Provence Av.de Servian 7 34290Bassan France e-mail: [email protected] ISSN 2191-5423 e-ISSN2191-5431 ISBN 978-3-642-19198-5 e-ISBN978-3-642-19199-2 DOI 10.1007/978-3-642-19199-2 SpringerHeidelbergDordrechtLondonNewYork (cid:2)RogerBoudet2011 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcast- ing, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawof September 9, 1965, in its current version, and permission for use must always be obtained from Springer.ViolationsareliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply, even in the absence of a specific statement, that such names are exempt from the relevant protectivelawsandregulationsandthereforefreeforgeneraluse. Coverdesign:eStudioCalamar,Berlin/Figueres Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Theaimoftheworkweproposeisacontributiontotheexpressionofthepresent particlestheoriesintermsentirelyrelevanttotheelementsofthegeometryofthe Minkowski space–time M ¼R1;3, that is those of the Grassmann algebra ^R4, scalars, vectors, bivectors, pseudo-vectors, pseudo-scalars of R4 associated with thesignature(1,3)whichdefinesM,and,atthesametime,theeliminationofthe complex language of the Pauli and Dirac matrices and spinors which is used in quantum mechanics. Thereasonsforthischangeoflanguagelie,inthefirstplace,inthefactthatthis real language is the same as the one in which the results of experiments are written, which are necessarily real. Butthereisanotherreasoncertainlymoreimportant.Experimentsaregenerally achievedinalaboratoryframewhichisagalileanframe,andthefundamentallaws of Nature are in fact independent of all galilean frame. So the theories must be expressedinaninvariantform.Thengeometricalobjectsappear,whoseproperties give in particular a clear interpretation of what we call energy. Also gauges are geometrically interpreted as rings of rotations of sub-spaces of local orthonormal moving frames. The energy–momentum tensors correspond to the product of a suitable physical constant by the infinitesimal rotation of these sub-spaces into themselves. The passage of the expression of a theory from its form in a galilean frame to the one independent of all galilean frame, is difficult to obtain with the use of complex matrices and spinors language. The Dirac spinor which expresses the wavefunctionWassociatedwithaparticleisnothingelsebyitselfbutacolumnof four complex numbers. The definition of its properties requires actions on this column of the Dirac complex matrices. An immense step in clarity was achieved by the real form w given in 1967 by David Hestenes (Oersted Medal 2002) to the Dirac W. In this form, the Lorentz rotationwhichallowsthedirectpassagetotheinvariantentitiesappearsexplicitly. In particular the geometrical meaning of the gauges defined by the complex Lie rings Uð1ÞandSUð2Þ becomes evident. v vi Preface It should be emphasized, like an indisputable confirmation of the independent work of Hestenes, that a geometrical interpretation of the Dirac W had been implicitly given, probably during the years 1930, by Arnold Sommerfeld in a calculation related to hydrogenic atoms, and more generally and explicitly by Georges Lochak in 1956. In these works W is expressed by means of Dirac matrices,theselastonesbeingimplicitlyidentifiedwiththevectorsofthegalilean frame in which the Dirac equation of the electron is written. But the use of a tool, the Clifford algebra Clð1;3Þ associated with the space M ¼R1;3, introduced by D. Hestenes, brings considerable simplifications. Pages ofcalculationsgivingtensorialequationsdeducedfromthecomplexlanguagemay be replaced by few lines. Furthermore ambiguities associated with the use of the p ffiffiffiffiffiffiffi imaginarynumberi¼ (cid:2)1areeliminated. Thestriking pointlies inthefact that the ‘‘number i’’ which lies in the Dirac theory of the electron is a bivector of the Minkowski space–time M, a real object, which allows to define, after the above Lorentzrotationandthemultiplicationby(cid:2)hc=2,theproperangularmomentum,or spin, of the electron. In the same aim, to avoid the ambiguousness of the complex Quantum Field Theory, due to the unseasonable association i(cid:2)hof (cid:2)handi in the expression of the electromagnetic potentials ‘‘in quite analogy with the ordinary quantum theory’’ (in fact the Dirac theory of the electron), we give a presentation of quantum electrodynamicsentirelyreal.ItisonlybasedontheuseoftheGrassmannalgebra of M and the inner product in M. The more the theories of the particles become complicated, the more the links whichcanunifythesetheoriesinanidenticalvisionofthelawsofNaturehaveto be made explicit. When these laws are placed in the frame of the Minkowski space–time, the complete translation of these theories in the geometry of space– time appears as a necessity. Such is the reason for the writing of the present volume. However, if this book contains a critique, sometimes severe, of the language basedontheuseofthecomplexmatrices,spinorsandLierings,thiscritiquedoes not concern in any way the authors of works obtained by means of this language, which remain the foundations of Quantum Mechanics. The more this language is abstract with respect to the reality of the laws of Nature, the more these works appear to be admirable. Bassan, February 2011 Roger Boudet Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Part I The Real Geometrical Algebra or Space–Time Algebra. Comparison with the Language of the Complex Matrices and Spinors 2 The Clifford Algebra Associated with the Minkowski Space–Time M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 The Clifford Algebra Associated with an Euclidean Space . . . 7 p ffiffiffiffiffiffiffi 2.2 The Clifford Algebras and the ‘‘Imaginary Number’’ (cid:2)1. . . . 9 2.3 The Field of the Hamilton Quaternions and the Ring of the Biquaternion as Clþð3;0ÞandClð3;0Þ’Clþð1;3Þ. . . . . 10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Comparison Between the Real and the Complex Language . . . . . 13 3.1 The Space–Time Algebra and the Wave Function Associated with a Particle: The Hestenes Spinor . . . . . . . . . . 13 3.2 The Takabayasi–Hestenes Moving Frame . . . . . . . . . . . . . . . 15 3.3 Equivalences Between the Hestenes and the Dirac Spinors . . . 15 3.4 Comparison Between the Dirac and the Hestenes Spinors . . . . 16 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 vii viii Contents Part II The U(1) Gauge in Complex and Real Languages. Geometrical Properties and Relation with the Spin and the Energy of a Particle of Spin 1/2 4 Geometrical Properties of the U(1) Gauge. . . . . . . . . . . . . . . . . . 21 4.1 The Definition of the Gauge and the Invariance of a Change of Gauge in the U(1) Gauge . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.1 The U(1) Gauge in Complex Language. . . . . . . . . . . 21 4.1.2 The U(1) Gauge Invariance in Complex Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.3 A Paradox of the U(1) Gauge in Complex Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 The U(1) Gauge in Real Language. . . . . . . . . . . . . . . . . . . . 22 4.2.1 The Definition of the U(1) Gauge in Real Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2.2 The U(1) Gauge Invariance in Real Language. . . . . . 23 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5 Relation Between the U(1) Gauge, the Spin and the Energy of a Particle of Spin 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.1 Relation Between the U(1) Gauge and the Bivector Spin . . . . 25 5.2 Relation Between the U(1) Gauge and the Momentum–Energy Tensor Associated with the Particle. . . . . 25 5.3 Relation Between the U(1) Gauge and the Energy of the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Part III Geometrical Properties of the Dirac Theory of the Electron 6 The Dirac Theory of the Electron in Real Language . . . . . . . . . . 29 6.1 The Hestenes Real form of the Dirac Equation . . . . . . . . . . . 29 6.2 The Probability Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.3 Conservation of the Probability Current. . . . . . . . . . . . . . . . . 30 6.4 The Proper (Bivector Spin) and the Total Angular–Momenta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.5 The Tetrode Energy–Momentum Tensor . . . . . . . . . . . . . . . . 31 6.6 Relation Between the Energy of the Electron and the Infinitesimal Rotation of the ‘‘Spin Plane’’. . . . . . . . . . . . 32 6.7 The Tetrode Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.8 The Lagrangian of the Dirac Electron. . . . . . . . . . . . . . . . . . 33 6.9 Units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Contents ix 7 The Invariant Form of the Dirac Equation and Invariant Properties of the Dirac Theory. . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.1 The Invariant Form of the Dirac Equation. . . . . . . . . . . . . . . 35 7.2 The Passage from the Equation of the Electron to the One of the Positron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.3 The Free Dirac Electron, the Frequency and the Clock of L. de Broglie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.4 The Dirac Electron, the Einstein Formula of the Photoeffect and the L. de Broglie Frequency . . . . . . . . . . . . . . . . . . . . . 39 7.5 The Equation of the Lorentz Force Deduced from the Dirac Theory of the Electron . . . . . . . . . . . . . . . . . . . . . 40 7.6 On the Passages of the Dirac Theory to the Classical Theory of the Electron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Part IV The SU(2) Gauge and the Yang–Mills Theory in Complex and Real Languages 8 Geometrical Properties of the SU(2) Gauge and the Associated Momentum–Energy Tensor . . . . . . . . . . . . . . . . . . . . 45 8.1 The SU(2) Gauge in the General Yang–Mills Field Theory in Complex Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 8.2 The SU(2) Gauge and the Y.M. Theory in STA. . . . . . . . . . . 46 8.2.1 The SU(2) Gauge and the Gauge Invariance in STA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 8.2.2 A Momentum–Energy Tensor Associated with the Y.M. Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8.2.3 The STA Form of the Y.M. Theory Lagrangian. . . . . 49 8.3 Conclusions About the SU(2) Gauge and the Y.M. Theory . . . 49 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Part V The SU(2) 3 U(1) Gauge in Complex and Real Languages 9 Geometrical Properties of the SU(2) 3 U(1) Gauge . . . . . . . . . . . 53 9.1 Left and Right Parts of a Wave Function . . . . . . . . . . . . . . . 53 9.2 Left and Right Doublets Associated with Two Wave Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9.3 The Part SU(2) of the SU(2) 9 U(1) Gauge. . . . . . . . . . . . . . 56 9.4 The Part U(1) of the SU(2) 9 U(1) Gauge . . . . . . . . . . . . . . 56 9.5 Geometrical Interpretation of the SU(2) 9 U(1) Gauge of a Left or Right Doublet. . . . . . . . . . . . . . . . . . . . . . . . . . 56