ebook img

Quantum mechanics, concepts and applications PDF

203 Pages·1999·1.091 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum mechanics, concepts and applications

Quantum Mechanics { Concepts and Applications Tarun Biswas June 16, 1999 Copyright Copyright c 1990, 1994, 1995, 1998, 1999 by Tarun Biswas, Physics Department, State ° University of New York at New Paltz, New Paltz, New York 12561. Copyright Agreement This online version of the book may be reproduced freely in small numbers (10 or less per individual) as long as it is done in its entirety including the title, the author's name and this copyright page. For larger numbers of copies one must obtain the author's written consent. Copies of this book may not be sold for pro¯t. i Contents 1 Mathematical Preliminaries 1 1.1 The state vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The inner product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Linear operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Eigenstates and eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 The Dirac delta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 The Laws (Postulates) of Quantum Mechanics 16 2.1 A lesson from classical mechanics . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 The postulates of quantum mechanics . . . . . . . . . . . . . . . . . . . . . 17 2.3 Some history of the postulates . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Popular Representations 20 3.1 The position representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 The momentum representation . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 Some Simple Examples 25 4.1 The Hamiltonian, conserved quantities and expectation value . . . . . . . . 25 4.2 Free particle in one dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.1 Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ii 4.2.2 Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.3 Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 The harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3.1 Solution in position representation . . . . . . . . . . . . . . . . . . . 36 4.3.2 A representation free solution . . . . . . . . . . . . . . . . . . . . . . 39 4.4 Landau levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5 More One Dimensional Examples 45 5.1 General characteristics of solutions . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.1 E <V(x) for all x . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.1.2 Bound states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.1.3 Scattering states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Some oversimpli¯ed examples . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2.1 Rectangular potential well (bound states) . . . . . . . . . . . . . . . 55 5.2.2 Rectangular potential barrier (scattering states) . . . . . . . . . . . 58 6 Numerical Techniques in One Space Dimension 64 6.1 Finite di®erences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2 One dimensional scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.3 One dimensional bound state problems . . . . . . . . . . . . . . . . . . . . . 72 6.4 Other techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.5 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.6 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7 Symmetries and Conserved Quantities 78 7.1 Symmetry groups and their representation . . . . . . . . . . . . . . . . . . . 78 7.2 Space translation symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 iii 7.3 Time translation symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.4 Rotation symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.4.1 Eigenvalues of angular momentum . . . . . . . . . . . . . . . . . . . 85 7.4.2 Addition of angular momenta . . . . . . . . . . . . . . . . . . . . . . 89 7.5 Discrete symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.5.1 Space inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.5.2 Time reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 8 Three Dimensional Systems 96 8.1 General characteristics of bound states . . . . . . . . . . . . . . . . . . . . . 96 8.2 Spherically symmetric potentials . . . . . . . . . . . . . . . . . . . . . . . . 97 8.3 Angular momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 8.4 The two body problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8.5 The hydrogen atom (bound states) . . . . . . . . . . . . . . . . . . . . . . . 102 8.6 Scattering in three dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . 104 8.6.1 Center of mass frame vs. laboratory frame . . . . . . . . . . . . . . 106 8.6.2 Relation between asymptotic wavefunction and cross section . . . . 107 8.7 Scattering due to a spherically symmetric potential . . . . . . . . . . . . . . 108 9 Numerical Techniques in Three Space Dimensions 112 9.1 Bound states (spherically symmetric potentials) . . . . . . . . . . . . . . . . 112 9.2 Bound states (general potential) . . . . . . . . . . . . . . . . . . . . . . . . 114 9.3 Scattering states (spherically symmetric potentials) . . . . . . . . . . . . . . 116 9.4 Scattering states (general potential) . . . . . . . . . . . . . . . . . . . . . . 118 10 Approximation Methods (Bound States) 121 10.1 Perturbation method (nondegenerate states) . . . . . . . . . . . . . . . . . . 122 iv 10.2 Degenerate state perturbation analysis . . . . . . . . . . . . . . . . . . . . . 126 10.3 Time dependent perturbation analysis . . . . . . . . . . . . . . . . . . . . . 128 10.4 The variational method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 11 Approximation Methods (Scattering States) 136 11.1 The Green's function method . . . . . . . . . . . . . . . . . . . . . . . . . . 137 11.2 The scattering matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 11.3 The stationary case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 11.4 The Born approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 12 Spin and Atomic Spectra 149 12.1 Degenerate position eigenstates . . . . . . . . . . . . . . . . . . . . . . . . . 150 12.2 Spin-half particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 12.3 Spin magnetic moment (Stern-Gerlach experiment) . . . . . . . . . . . . . . 155 12.4 Spin-orbit coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 12.5 Zeeman e®ect revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 13 Relativistic Quantum Mechanics 162 13.1 The Klein-Gordon equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 13.2 The Dirac equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 13.3 Spin and the Dirac particle . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 13.4 Spin-orbit coupling in the Dirac hamiltonian . . . . . . . . . . . . . . . . . 170 13.5 The Dirac hydrogen atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 13.6 The Dirac particle in a magnetic ¯eld . . . . . . . . . . . . . . . . . . . . . 177 A `C' Programs for Assorted Problems 180 A.1 Program for the solution of energy eigenvalues for the rectangular potential well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 v A.2 General Program for one dimensional scattering o® arbitrary barrier . . . . 181 A.3 Function for rectangular barrier potential . . . . . . . . . . . . . . . . . . . 182 A.4 General energy eigenvalue search program . . . . . . . . . . . . . . . . . . . 183 A.5 Function for the harmonic oscillator potential . . . . . . . . . . . . . . . . . 185 A.6 Function for the hydrogen atom potential . . . . . . . . . . . . . . . . . . . 186 B Uncertainties and wavepackets 189 vi Preface The fundamental idea behind any physical theory is to develop predictive power with a minimal set of experimentally tested postulates. However, historical development of a theory is not always that systematic. Di®erent theorists and experimentalists approach the subject di®erently and achieve successes in di®erent directions which gives the subject a rather \patchy" appearance. This has been particularly true for quantum mechanics. However,nowthatthedusthas settledandphysicistsknowquantummechanicsreasonably well,itisnecessarytoconsolidateconceptsandputtogetherthatminimalsetofpostulates. The minimal set of postulates in classical mechanics is already very well known and hence it is a much easier subject to present to a student. In quantum mechanics such a set is usually not identi¯edintext books which, I believe, is the major cause of fear of the sub- ject among students. Very often, text books enumerate the postulates but continue to add furtherassumptionswhile solvingindividualproblems. This is particularlydisconcertingin quantum mechanics where, physical intuition being nonexistent, assumptions are di±cult to justify. It is also necessary to separate the postulates from the sophisticated mathe- matical techniques needed to solve problems. In doing this one may draw analogies from classical mechanics where the physical postulate is Newton's second law and everything else is creative mathematics for the purpose of using this law in di®erent circumstances. In quantum mechanics the equivalent of Newton's second law is, of course, the SchroÄdinger equation. However, before using the SchroÄdinger equation it is necessary to understand the mathematical meanings of its components e.g. the wavefunction or the state vector. This, of course, is also true for Newton's law. There one needs to understand the relatively simple concept of particle trajectories. Some previous texts have successfully separated the mathematics from the physical principles. However,as aconsequence, theyhave introducedsomuchmathematicsthatthe physical content of the theory is lost. Such books are better used as references rather than textbooks. The present text will attempt a compromise. It will maintain the separation of the minimal set of postulates from the mathematical techniques. At the same time close contact with experiment will be maintained to avoid alienating the physics student. Mathematical rigor will also be maintained barring some exceptions where it would take the reader too far a¯eld into mathematics. vii A signi¯cantly di®erent feature of this book is the highlighting of numerical methods. Anunavoidableconsequenceofdoingpracticalphysicsisthatmostrealisticproblemsdonot have analytical solutions. The traditional approach to such problems has been a process of approximation of the complex system to a simple one and then adding appropriate numbers of correction terms. This has given rise to several methods of ¯nding correction terms and some of them will be discussed in this text. However, these techniques were originally meant for hand computation. With the advent of present day computers more direct approaches to solving complex problems are available. Hence, besides learning to solve standard analytically solvable problems, the student needs to learn general numerical techniques that would allow one to solve any problem that has a solution. This would serve twopurposes. First, it makes the student con¯dentthatevery well de¯nedproblem is solvableandtheworlddoesnothavetobemadeupofcloseapproximationsoftheharmonic oscillator and the hydrogen atom. Second, one very often comes up with a problem that is so far from analytically solvable problems that standardapproximationmethods would not bereliable. Thishasbeenmymotivationinincludingtwochaptersonnumericaltechniques andencouragingthe studenttouse suchtechniques at everyopportunity. The goal of these chapters is not to provide the most accurate algorithms or to give a complete discussion of all numerical techniques known (the list would be too long even if I were to know them all). Instead, Idiscusstheintuitively obvioustechniquesandencouragestudentstodevelop their own tailor-made recipes for speci¯c problems. This book has been designed for a ¯rst course (two semesters) in quantum mechanics at the graduate level. The student is expected to be familiar with the physical principles behind basic ideas like the Planck hypothesis and the de Broglie hypothesis. He (or she) would also need the background of a graduate level course in classical mechanics and some working knowledge of linear algebra and di®erential equations. viii Chapter 1 Mathematical Preliminaries 1.1 The state vectors In the next chapter we shall consider the complete descriptor of a system to be its state vector. Here I shall de¯ne the state vector through its properties. Some properties and de¯nitions that are too obvious will be omitted. I shall use a slightly modi¯ed version of the convenient notation given by Dirac [1]. A state vector might also be called a state or a vector for short. In the following, the reader is encouraged to see analogies from complex matrix algebra. A state vector for some state scan be represented by the so called ket vector s . The j i label s can be chosen conveniently for speci¯c problems. s will in general depend on all j i degrees of freedom of the system as well as time. The space of all possible kets for a system will be called the linear vector space . In the following, the term linear will be dropped as V all vector spaces considered here will be linear. The fundamental property (or rule) of is V Rule 1 If s ; r then j i j i2V a s +br ; j i j i 2V where a;b (set of complex numbers) 2C Themeaningofadditionofketsandmultiplicationbycomplexnumberswillbecomeobvious inthesense ofcomponentsofthevectoroncecomponentsarede¯ned. Thephysicalcontent of the state vector is purely in its \direction", that is Rule 2 The physical contents of s and a s are the same if a and a=0. j i j i 2C 6 At this stage the following commonly used terms can be de¯ned. 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.