This page intentionally left blank Quantum Mechanics Theimportantchangesquantummechanicshasundergoneinrecentyearsarereflectedin thisnewapproachforstudents. A strong narrative and over 300 worked problems lead the student from experiment, throughgeneralprinciplesofthetheory,tomodernapplications.Steppingthroughresults allows students to gain a thorough understanding. Starting with basic quantum mechan- ics, the book moves on to more advanced theory, followed by applications, perturbation methods and special fields, and ending with new developments in the field. Historical, mathematical, and philosophical boxes guide the student through the theory. Unique to this textbook are chapters on measurement and quantum optics, both at the forefront of currentresearch.Advancedundergraduateandgraduatestudentswillbenefitfromthisnew perspectiveonthefundamentalphysicalparadigmanditsapplications. Online resources including solutions to selected problems and 200 figures, with color versionsofsomefigures,areavailableatwww.cambridge.org/Auletta. GennaroAulettaisScientificDirectorofScienceandPhilosophyatthePontificalGrego- rianUniversity,Rome.Hismainareasofresearcharequantummechanics,logic,cognitive sciences,informationtheory,andapplicationstobiologicalsystems. MauroFortunatoisaStructureratCassadepositieprestitiS.p.A.,Rome.Heisinvolvedin financial engineering, applying mathematical methods of quantum physics to the pricing ofcomplexfinancialderivativesandtheconstructionofstructuredproducts. GiorgioParisiisProfessorofQuantumTheoriesattheUniversityofRome“LaSapienza.” Hehaswonseveralprizes,notablytheBoltzmannMedal,theDiracMedalandPrize,and the Daniel Heineman prize. His main research activity deals with elementary particles, theory of phase transitions and statistical mechanics, disordered systems, computers and verylargescalesimulations,non-equilibriumstatisticalphysics,optimization,andanimal behavior. Quantum Mechanics GENNARO AULETTA Pontifical Gregorian University, Rome MAURO FORTUNATO Cassa Depositi e Prestiti S.p.A., Rome GIORGIO PARISI ‘‘La Sapienza’’ University, Rome CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521869638 © G. Auletta, M. Fortunato and G. Parisi 2009 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2009 ISBN-13 978-0-511-53363-1 eBook (EBL) ISBN-13 978-0-521-86963-8 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Listoffigures pagexi Listoftables xvii Listofdefinitions,principles,etc. xviii Listofboxes xx Listofsymbols xxi Listofabbreviations xxxii Introduction 1 Part I Basic features of quantum mechanics 1 Fromclassicalmechanicstoquantummechanics 7 1.1 Reviewofthefoundationsofclassicalmechanics 7 1.2 Aninterferometryexperimentanditsconsequences 12 1.3 Stateasvector 20 1.4 Quantumprobability 28 1.5 Thehistoricalneedofanewmechanics 31 Summary 40 Problems 41 Furtherreading 42 2 Quantumobservablesandstates 43 2.1 Basicfeaturesofquantumobservables 43 2.2 Wavefunctionandbasicobservables 68 2.3 Uncertaintyrelation 82 2.4 Quantumalgebraandquantumlogic 92 Summary 96 Problems 97 Furtherreading 99 3 Quantumdynamics 100 3.1 TheSchrödingerequation 101 3.2 PropertiesoftheSchrödingerequation 107 3.3 SchrödingerequationandGalileitransformations 111 3.4 One-dimensionalfreeparticleinabox 113 3.5 Unitarytransformations 117 vi Contents (cid:2) 3.6 Differentpictures 125 3.7 TimederivativesandtheEhrenfesttheorem 129 3.8 Energy–timeuncertaintyrelation 130 3.9 Towardsatimeoperator 135 Summary 138 Problems 139 Furtherreading 140 4 Examplesofquantumdynamics 141 4.1 Finitepotentialwells 141 4.2 Potentialbarrier 145 4.3 Tunneling 150 4.4 Harmonicoscillator 154 4.5 Quantumparticlesinsimplefields 165 Summary 169 Problems 170 5 Densitymatrix 174 5.1 Basicformalism 174 5.2 Expectationvaluesandmeasurementoutcomes 177 5.3 Timeevolutionanddensitymatrix 179 5.4 Statisticalpropertiesofquantummechanics 180 5.5 Compoundsystems 181 5.6 Pure-andmixed-staterepresentation 187 Summary 188 Problems 189 Furtherreading 190 Part II More advanced topics 6 Angularmomentumandspin 193 6.1 Orbitalangularmomentum 193 6.2 Specialexamples 207 6.3 Spin 217 6.4 Compositionofangularmomentaandtotalangularmomentum 226 6.5 Angularmomentumandangle 239 Summary 241 Problems 242 Furtherreading 244 7 Identicalparticles 245 7.1 Statisticsandquantummechanics 245 7.2 Wavefunctionandsymmetry 247 7.3 Spinandstatistics 249 vii Contents (cid:2) 7.4 Exchangeinteraction 254 7.5 Tworecentapplications 255 Summary 257 Problems 257 Furtherreading 258 8 Symmetriesandconservationlaws 259 8.1 Quantumtransformationsandsymmetries 259 8.2 Continuoussymmetries 264 8.3 Discretesymmetries 266 8.4 Abriefintroductiontogrouptheory 267 Summary 275 Problems 275 Furtherreading 276 9 Themeasurementprobleminquantummechanics 277 9.1 Statementoftheproblem 278 9.2 Abriefhistoryoftheproblem 284 9.3 Schrödingercats 291 9.4 Decoherence 297 9.5 Reversibility/irreversibility 308 9.6 Interaction-freemeasurement 315 9.7 Delayed-choiceexperiments 320 9.8 QuantumZenoeffect 322 9.9 Conditionalmeasurementsorpostselection 325 9.10 Positiveoperatorvaluedmeasure 327 9.11 Quantumnon-demolitionmeasurements 335 9.12 Decisionandestimationtheory 341 Summary 349 Problems 351 Furtherreading 353 Part III Matter and light 10 Perturbationsandapproximationmethods 357 10.1 Stationaryperturbationtheory 357 10.2 Time-dependentperturbationtheory 366 10.3 Adiabatictheorem 369 10.4 Thevariationalmethod 371 10.5 Classicallimit 372 10.6 SemiclassicallimitandWKBapproximation 378 10.7 Scatteringtheory 384 10.8 Pathintegrals 389 Summary 398 viii Contents (cid:2) Problems 399 Furtherreading 399 11 Hydrogenandheliumatoms 401 11.1 Introduction 401 11.2 Quantumtheoryofthehydrogenatom 403 11.3 Atomandmagneticfield 413 11.4 Relativisticcorrections 423 11.5 Heliumatom 426 11.6 Many-electroneffects 431 Summary 436 Problems 437 Furtherreading 438 12 Hydrogenmolecularion 439 12.1 Themolecularproblem 439 12.2 Born–Oppenheimerapproximation 440 12.3 Vibrationalandrotationaldegreesoffreedom 443 12.4 TheMorsepotential 447 12.5 Chemicalbondsandfurtherapproximations 449 Summary 453 Problems 453 Furtherreading 454 13 Quantumoptics 455 13.1 Quantizationoftheelectromagneticfield 457 13.2 Thermodynamicequilibriumoftheradiationfield 462 13.3 Phase–numberuncertaintyrelation 463 13.4 Specialstatesoftheelectromagneticfield 465 13.5 Quasi-probabilitydistributions 474 13.6 Quantum-opticalcoherence 481 13.7 Atom–fieldinteraction 484 13.8 Geometricphase 497 13.9 TheCasimireffect 501 Summary 506 Problems 507 Furtherreading 509 Part IV Quantum information: state and correlations 14 Quantumtheoryofopensystems 513 14.1 Generalconsiderations 514 14.2 Themasterequation 516
Description: