Chapter 6 Quantum Mechanical Addition of Angular Momenta and Spin In this section we consider composite systems made up of several particles, each carrying orbital angularmomentumdecribedbysphericalharmonicsY (θ,φ)aseigenfunctionsand/orspin. Often (cid:96)m thesocalledtotal angular momentum,classicallyspeakingthesumofallangularmomentaandspins of the composite system, is the quantity of interest, since related operators, sums of orbital angular momentum and of spin operators of the particles, commute with the Hamiltonian of the composite system and, hence, give rise to good quantum numbers. We like to illustrate this for an example involving particle motion. Further below we will consider composite systems involving spin states. Example: Three Particle Scattering Consider the scattering of three particles A, B, C governed by a Hamiltonian H which depends only on the internal coordinates of the system, e.g., on the distances between the three particles, but neither on the position of the center of mass of the particles nor on the overall orientation of the three particle system with respect to a laboratory–fixed coordinate frame. To specify the dependency of the Hamiltonian on the particle coordinates we start from the nine numbers which specify the Cartesian components of the three position vectors (cid:126)r , (cid:126)r , (cid:126)r of the A B C particles. Since the Hamiltonian does not depend on the position of the center of mass R(cid:126) = (m (cid:126)r +m (cid:126)r +m (cid:126)r )/(m +m +m ), sixparametersmustsufficetodescribetheinteraction A A B B C C A B C of the system. The overall orientation of any three particle configuration can be specified by three parameters1, e.g., by a rotational vector ϑ(cid:126). This eleminates three further parameters from the dependency of the Hamiltonian on the three particle configuration and one is left with three parameters. How should they be chosen? Actually there is no unique choice. We like to consider a choice which is physically most reasonable in a situation that the scattering proceeds such that particles A and B are bound, and particle C impinges on the compound AB coming from a large distance. In this case a proper choice for a description of interactions would be to consider the vectors (cid:126)r = (cid:126)r −(cid:126)r and ρ(cid:126) = (m (cid:126)r + AB A B C A A m (cid:126)r )/(m +m )−(cid:126)r , and to express the Hamiltonian in terms of |(cid:126)r |, |ρ(cid:126) |, and (cid:94)((cid:126)r ,ρ(cid:126) ). B B A B C AB C AB C The rotational part of the scattering motion is described then in terms of the unit vectors rˆ and AB 1We remind the reader that, for example, three Eulerian angles α,β,γ are needed to specify a general rotational transformation 141 142 Addition of Angular Momenta and Spin ρˆ , each of which stands for two angles. One may consider then to describe the motion in terms C of products of spherical harmonics Y (rˆ )Y (ρˆ ) describing rotation of the compound AB (cid:96)1m1 AB (cid:96)2m2 C and the orbital angular momentum of C around AB. One can describe the rotational degrees of freedom of the three-particle scattering process through the basis B = {Y (rˆ )Y (ρˆ ),(cid:96) = 0,1,...,(cid:96) ,−(cid:96) ≤ m ≤ (cid:96) ; (cid:96)1m1 AB (cid:96)2m2 C 1 1,max 1 1 1 (cid:96) = 0,1,...,(cid:96) ,−(cid:96) ≤ m ≤ (cid:96) } (6.1) 2 2,max 2 1 2 where (cid:96) and (cid:96) denote the largest orbital and rotational angular momentum values, the 1,max 2,max values of which are determined by the size of the interaction domain ∆ , by the total energy E, V by the masses mA, mB, mC, and by the moment of inertia IA−B of the diatomic molecule A–B approximately as follows ∆ 2m m m E 1 A B C (cid:96)1,max = (cid:126) (cid:114)m m + m m + m m , (cid:96)2,max = (cid:126) (cid:112)2IA−BE . (6.2) A B B C A C The dimension d(B) of B is (cid:96)1,max (cid:96)2,max d(B) = (2(cid:96) + 1) (2(cid:96) + 1) = ((cid:96) + 1)2((cid:96) + 1)2 (6.3) (cid:88) 1 (cid:88) 2 1,max 2,max (cid:96)1=0 (cid:96)2=0 For rather moderate values (cid:96) = (cid:96) = 10 one obtains d(B) = 14 641, a very large number. 1,max 2,max Suchlargenumberofdynamicallycoupledstateswouldconstituteaseriousprobleminanydetailed description of the scattering process, in particular, since further important degrees of freedom, i.e., vibrations and rearrangement of the particles in reactions like AB + C → A + BC, have not even be considered. The rotational symmetry of the interaction between the particles allows one, however, to separate the 14 641 dimensional space of rotational states Y (rˆ )Y (ρˆ ) into (cid:96)1m1 AB (cid:96)2m2 C subspaces B , B ⊕B ⊕... = B such, that only states within the subspaces B are coupled in the k 1 2 k scattering process. In fact, as we will demonstrate below, the dimensions d(B ) of these subspaces k does not exceed 100. Such extremely useful transformation of the problem can be achieved through the choice of a new basis set B(cid:48) = { c(n) Y (rˆ )Y (ρˆ ), n = 1,2,...14 641} . (6.4) (cid:88) (cid:96)1,m1;(cid:96)2,m2 (cid:96)1m1 AB (cid:96)2m2 C (cid:96)1,m1 (cid:96)2,m2 The basis set which provides a maximum degree of decoupling between rotational states is of great principle interest since the new states behave in many respects like states with the attributes of a single angular momentum state: to an observer the three particle system prepared in such states my look like a two particle system governed by a single angular momentum state. Obviously, composite systems behaving like elementary objects are common, albeit puzzling, and the following mathematicaldescriptionwillshedlightontheirubiquitousappearenceinphysics,infact,willmake their appearence a natural consequence of the symmetry of the building blocks of matter. There is yet another important reason why the following section is of fundamental importance for the theory of the microscopic world governed by Quantum Mechanics, rather than by Classical Mechanics. The latter often arrives at the physical properties of composite systems by adding the 6.0: Addition of Angular Momenta and Spin 143 correspondingphysicalpropertiesoftheelementarycomponents; examplesarethetotalmomentum or the total angular momentum of a composite object which are the sum of the (angular) momenta of the elementary components. Describing quantum mechanically a property of a composite object as a whole and relating this property to the properties of the elementary building blocks is then the quantum mechanical equivalent of the important operation of addittion. In this sense, the reader will learn in the following section how to add and subtract in the microscopic world of Quantum Physics, presumably a facility the reader would like to acquire with great eagerness. Rotational Symmetry of the Hamiltonian As pointed out already, the existence of a basis (6.4) which decouples rotational states is connected with the rotational symmetry of the Hamiltonian of the three particle system considered, i.e., connected with the fact that the Hamiltonian H does not depend on the overall orientation of the threeinteractingparticles. Hence, rotationsR(ϑ(cid:126))ofthewavefunctionsψ((cid:126)r ,ρ(cid:126) )definedthrough AB C R(ϑ(cid:126))ψ((cid:126)r ,ρ(cid:126) ) = ψ(R−1(ϑ(cid:126))(cid:126)r , R−1(ϑ(cid:126))ρ(cid:126) ) (6.5) AB C AB C (cid:48) do not affect the Hamiltonian. To specify this property mathematically let us denote by H the (cid:48) Hamiltonian in the rotated frame, assuming presently that H might, in fact, be different from H. It holds then H(cid:48)R(ϑ(cid:126))ψ = R(ϑ(cid:126))Hψ. Since this is true for any ψ((cid:126)r ,ρ(cid:126) ) it follows H(cid:48)R(ϑ(cid:126)) = AB C R(ϑ(cid:126))H, from which follows in turn the well-known result that H(cid:48) is related to H through the similarity transformation H(cid:48) = R(ϑ(cid:126))HR−1(ϑ(cid:126)). The invariance of the Hamiltonian under overall rotations of the three particle system implies then H = R(ϑ(cid:126))HR−1(ϑ(cid:126)) . (6.6) For the following it is essential to note that H is not invariant under rotations of only (cid:126)r or ρ(cid:126) , AB C but solely under simultaneous and identical rotations of (cid:126)r or ρ(cid:126) . AB C Following our description of rotations of single particle wave functions we express (6.5) according to (5.48) i i R(ϑ(cid:126)) = exp(cid:18)− ϑ(cid:126)·J(cid:126)(1)(cid:19) exp(cid:18)− ϑ(cid:126)·J(cid:126)(2)(cid:19) (6.7) (cid:126) (cid:126) where the generators J(cid:126)(k) are differential operators acting on rˆ (k = 1) and on ρˆ (k = 2). For AB C example, according to (5.53, 5.55) holds i ∂ ∂ i ∂ ∂ − J(1) = z − y ; − J(2) = ρ − ρ . (6.8) (cid:126) 1 AB∂y AB∂z (cid:126) 3 y∂ρ x∂ρ AB AB x y Obviously, the commutation relationships J(1), J(2) = 0 for p,q = 1,2,3 (6.9) (cid:104) p q (cid:105) hold since the components of J(cid:126)(k) are differential operators with respect to different variables. One can equivalently express therefore (6.7) i R(ϑ(cid:126)) = exp(cid:18)− ϑ(cid:126)·(cid:126)J(cid:19) (6.10) (cid:126) 144 Addition of Angular Momenta and Spin where (cid:126)J = J(cid:126)(1) + J(cid:126)(2) . (6.11) By means of (6.11) we can write the condition (6.6) for rotational invariance of the Hamiltonian in the form i i H = exp(cid:18)− ϑ(cid:126)·(cid:126)J(cid:19) H exp(cid:18)+ ϑ(cid:126)·(cid:126)J(cid:19) . (6.12) (cid:126) (cid:126) We consider this equation for infinitesimal rotations, i.e. for |ϑ(cid:126)| (cid:28) 1. To order O(|ϑ(cid:126)|) one obtains i i i i H ≈ (cid:18)11 − ϑ(cid:126)·(cid:126)J(cid:19) H (cid:18)11 + ϑ(cid:126)·(cid:126)J(cid:19) ≈ H + Hϑ(cid:126)·(cid:126)J − ϑ(cid:126)·(cid:126)JH . (6.13) (cid:126) (cid:126) (cid:126) (cid:126) Since this holds for any ϑ(cid:126) it follows H(cid:126)J − (cid:126)JH = 0 or, componentwise, [H, J ] = 0 , k = 1,2,3 . (6.14) k We will refer in the following to J , k = 1,2,3 as the three components of the total angular k momentum operator. The property (6.14) implies that the total angular momentum is conserved during the scattering process, i.e., that energy, and the eigenvalues of(cid:126)J2 and J are good quantum numbers. To describe 3 the scattering process of AB + C most concisely one seeks eigenstates Y of(cid:126)J2 and J which can JM 3 be expressed in terms of Y (rˆ )Y (ρˆ ). (cid:96)1m1 AB (cid:96)2m2 C Definition of Total Angular Momentum States The commutation property (6.14) implies that the components of the total angular momentum operator (6.12) each individually can have simultaneous eigenstates with the Hamiltonian. We suspect, of course, that the components J , k = 1,2,3 cannot have simultaneous eigenstates a- k mong each other, a supposition which can be tested through the commutation properties of these operators. One can show readily that the commutation relationships [J ,J ] = i(cid:126)(cid:15) J (6.15) k (cid:96) k(cid:96)m m are satisfied, i.e., the operators J , k = 1,2,3 do not commute. For a proof one uses (6.9), the k properties [J(n),J(n)] = i(cid:126)(cid:15) J(n) for n = 1,2 together with the property [A,B + C] = k (cid:96) k(cid:96)m m [A,B] + [A,C]. We recognize, however, the important fact that the J obey the Lie algebra of SO(3). According k to the theorem above this property implies that one can construct eigenstates Y of J and of JM 3 J2 = J2 + J2 + J2 (6.16) 1 2 3 following the procedure stated in the theorem above [c.f. Eqs. (5.71–5.81)]. In fact, we will find that the states yield the basis B(cid:48) with the desired property of a maximal uncoupling of rotational states. Before we apply the procedure (5.71–5.81) we want to consider the relationship between Y and JM Y (rˆ )Y (ρˆ ). In the following we will use the notation (cid:96)1m1 AB (cid:96)2m2 C Ω = rˆ , Ω = ρˆ . (6.17) 1 AB 2 C 6.1: Clebsch-Gordan Coefficients 145 6.1 Clebsch-Gordan Coefficients InordertodetermineY wenoticethatthestatesY (Ω )Y (Ω )arecharacterizedbyfour JM (cid:96)1m1 1 (cid:96)2m2 2 quantum numbers corresponding to eigenvalues of J(1) 2, J(1), J(2) 2, and J(2). Since Y (cid:2) (cid:3) 3 (cid:2) (cid:3) 3 JM sofar specifies solely two quantum numbers, two further quantum numbers need to be specified for a complete characterization of the total angular momentum states. The two missing quantum numbers are (cid:96) and (cid:96) corresponding to the eigenvalues of J(1) 2 and J(2) 2. We, therefore, 1 2 (cid:2) (cid:3) (cid:2) (cid:3) assume the expansion Y ((cid:96) ,(cid:96) |Ω ,Ω ) = (JM|(cid:96) m (cid:96) m )Y (Ω )Y (Ω ) (6.18) JM 1 2 1 2 (cid:88) 1 1 2 2 (cid:96)1m1 1 (cid:96)2m2 2 m1,m2 where the states Y ((cid:96) ,(cid:96) |Ω ,ρˆ ) are normalized. The expansion coefficients (JM|(cid:96) m (cid:96) m ) JM 1 2 1 C 1 1 2 2 are called the Clebsch-Gordan coefficients which we seek to determine now. These coefficients, or the closely related Wigner 3j-coefficients introduced further below, play a cardinal role in the mathematical description of microscopic physical systems. Equivalent coefficients exist for other symmetry properties of multi–component systems, an important example being the symmetry groupsSU(N)governingelementaryparticlesmadeupoftwoquarks,i.e.,mesons,andthreequarks, i.e., baryons. Exercise 6.1.1: ShowthatJ2,J , J(1) 2, J(2) 2, andJ(cid:126)(1)·J(cid:126)(2) commute. WhycanstatesY 3 JM (cid:0) (cid:1) (cid:0) (cid:1) then not be specified by 5 quantum numbers? Properties of Clebsch-Gordan Coefficients A few important properties of Clebsch-Gordan coefficients can be derived rather easily. We first notice that Y in (6.18) is an eigenfunction of J , the eigenvalue being specified by the quantum JM 3 number M, i.e. J Y = (cid:126)M Y . (6.19) 3 JM JM Noting J = J(1) + J(2) and applying this to the l.h.s. of (6.18) yields using the property 3 3 3 J(k)Y (Ω ) = (cid:126)m Y (Ω ), k = 1,2 3 (cid:96)kmk k k (cid:96)kmk k M Y ((cid:96) ,(cid:96) |Ω ,Ω ) = JM 1 2 1 2 (m + m )(JM|(cid:96) m (cid:96) m )Y (Ω )Y (Ω ) . (6.20) (cid:88) 1 2 1 1 2 2 (cid:96)1m1 1 (cid:96)2m2 2 m1,m2 This equation can be satisfied only if the Clebsch-Gordan coefficients satisfy (JM|(cid:96) m (cid:96) m ) = 0 for m + m (cid:54)= M . (6.21) 1 1 2 2 1 2 One can, hence, restrict the sum in (6.18) to avoid summation of vanishing terms Y ((cid:96) ,(cid:96) |Ω ,Ω ) = (JM|(cid:96) m (cid:96) M −m )Y (Ω )Y (Ω ) . (6.22) JM 1 2 1 2 (cid:88) 1 1 2 1 (cid:96)1m1 1 (cid:96)2m2 2 m1 We will not adopt such explicit summation since it leads to cumbersum notation. However, the reader should always keep in mind that conditions equivalent to (6.21) hold. 146 Theory of Angular Momentum and Spin The expansion (6.18) constitutes a change of an orthonormal basis B((cid:96) ,(cid:96) ) = {Y (Ω )Y (Ω ),m = −(cid:96) ,−(cid:96) +1,...,(cid:96) , 1 2 (cid:96)1m1 1 (cid:96)2m2 2 1 1 1 1 m = −(cid:96) ,−(cid:96) +1,...,(cid:96) } , (6.23) 2 2 2 2 (cid:48) corresponding to the r.h.s., to a new basis B((cid:96) ,(cid:96) ) corresponding to the l.h.s. The orthonormality 1 2 property implies (cid:90) dΩ1(cid:90) dΩ2 Y(cid:96)1m1(Ω1)Y(cid:96)2m2(Ω2)Y(cid:96)(cid:48)1m(cid:48)1Ω1)Y(cid:96)(cid:48)2m(cid:48)2(Ω2) = δ(cid:96)1(cid:96)(cid:48)1δm1m(cid:48)1δ(cid:96)2(cid:96)(cid:48)2δm2m(cid:48)2. (6.24) The basis B((cid:96) ,(cid:96) ) has (2(cid:96) +1)(2(cid:96) +1) elements. The basis B(cid:48)((cid:96) ,(cid:96) ) is also orthonormal2 and 1 2 1 2 1 2 must have the same number of elements. For each quantum number J there should be 2J + 1 elements Y with M = −J,−J +1,...,J. However, it is not immediately obvious what the J– JM values are. Since Y represents the total angular momentum state and Y (Ω ) and Y (Ω ) JM (cid:96)1m1 1 (cid:96)2m2 2 theindividualangularmomentaonemaystartfromone’sclassicalnotionthatthesestatesrepresent angularmomentumvectors J(cid:126), J(cid:126)(1) andJ(cid:126)(2), respectively. Inthis case the rangeof|J(cid:126)|–values would be the interval [ |J(cid:126)(1)| − |J(cid:126)(2)| , |J(cid:126)(1)| + |J(cid:126)(2)|]. This obviously corresponds quantum mechanically (cid:12) (cid:12) (cid:12) (cid:12) to a range of J–(cid:12)values J = |(cid:96)1(cid:12)−(cid:96)2|, |(cid:96)1−(cid:96)2|+1,...(cid:96)1+(cid:96)2. In fact, it holds (cid:96)1+(cid:96)2 (2J + 1) = (2(cid:96) +1)(2(cid:96) +1) , (6.25) (cid:88) 1 2 J=|(cid:96)1−(cid:96)2| (cid:48) i.e., the basis B((cid:96) ,(cid:96) ) should be 1 2 B = {Y ((cid:96) ,(cid:96) |Ω ,Ω ); J = |(cid:96) −(cid:96) |, |(cid:96) −(cid:96) |+1,(cid:96) +(cid:96) , 2 JM 1 2 1 2 1 2 1 2 1 2 M = −J,−J +1,...,J} . (6.26) We will show below in an explicit construction of the Clebsch-Gordan coefficients that, in fact, the range of values assumed for J is correct. Our derivation below will also yield real values for the Clebsch-Gordan coefficients. Exercise 6.1.2: Prove Eq. (6.25) We want to state now two summation conditions which follow from the orthonormality of the two (cid:48) basis sets B((cid:96) ,(cid:96) ) and B((cid:96) ,(cid:96) ). The property 1 2 1 2 (cid:90) dΩ1(cid:90) dΩ2 Y∗JM((cid:96)1,(cid:96)2|Ω1,Ω2)YJ(cid:48)M(cid:48)((cid:96)1,(cid:96)2|Ω1,Ω2) = δJJ(cid:48)δMM(cid:48) (6.27) ∗ together with (6.18) applied to YJM and to YJ(cid:48)M(cid:48) and with (6.24) yields (cid:88) (JM|(cid:96)1m1(cid:96)2m2)∗(J(cid:48)M(cid:48)|(cid:96)1m1(cid:96)2m2) = δJJ(cid:48)δMM(cid:48) . (6.28) m1,m2 2This property follows from the fact that the basis elements are eigenstates of hermitian operators with different eigenvalues, and that the states can be normalized. 6.2: Construction of Clebsch-Gordan Coefficients 147 (cid:48) The second summation condition starts from the fact that the basis sets B((cid:96) ,(cid:96) ) and B((cid:96) ,(cid:96) ) 1 2 1 2 span the same function space. Hence, it is possible to expand Y (Ω )Y (Ω ) in terms of (cid:96)1m1 1 (cid:96)2m2 2 Y ((cid:96) ,(cid:96) |Ω ,Ω ), i.e., JM 1 2 1 2 (cid:96)1+(cid:96)2 J Y(cid:96)1m1(Ω1)Y(cid:96)2m2(Ω2) = (cid:88) (cid:88) cJ(cid:48)M(cid:48)YJ(cid:48)M(cid:48)((cid:96)1,(cid:96)2|Ω1,Ω2) , (6.29) J(cid:48)=|(cid:96)1−(cid:96)2|M(cid:48)=−J where the expansion coefficients are given by the respective scalar products in function space cJ(cid:48)M(cid:48) = (cid:90) dΩ1(cid:90) dΩ2 Y∗J(cid:48)M(cid:48)((cid:96)1,(cid:96)2|Ω1,Ω2)Y(cid:96)1m1(Ω1)Y(cid:96)2m2(Ω2) . (6.30) The latter property follows from multiplying (6.18) by Y∗ ((cid:96) ,(cid:96) |Ω ,Ω ) and integrating. The J(cid:48)M(cid:48) 1 2 1 2 orthogonality property (6.27) yields δJJ(cid:48)δMM(cid:48) = (cid:88) (JM|(cid:96)1m1(cid:96)2m2)cJ(cid:48)M(cid:48) . (6.31) m1,m2 Comparisionwith(6.28)allowsonetoconcludethatthecoefficientscJ(cid:48)M(cid:48) areidenticalto(J(cid:48)M(cid:48)|(cid:96)1m1(cid:96)2m2)∗, i.e., Y (Ω )Y (Ω ) (cid:96)1m1 1 (cid:96)2m2 2 (cid:96)1+(cid:96)2 J = (cid:88) (cid:88) (J(cid:48)M(cid:48)|(cid:96)1m1(cid:96)2m2)∗YJ(cid:48)M(cid:48)((cid:96)1,(cid:96)2|Ω1,Ω2) , (6.32) J(cid:48)=|(cid:96)1−(cid:96)2|M(cid:48)=−J which complements (6.18). One can show readily using the same reasoning as applied in the derivation of (6.28) from (6.18) that the Clebsch-Gordan coefficients obey the second summation condition (cid:88)(JM|(cid:96)1m1(cid:96)2m2)∗(JM|(cid:96)1m(cid:48)1(cid:96)2m(cid:48)2) = δm1m(cid:48)1δm2m(cid:48)2 . (6.33) JM The latter summation has not been restricted explicitly to allowed J–values, rather the convention (JM|(cid:96) m (cid:96) m ) = 0 if J < |(cid:96) −(cid:96) |, or J > (cid:96) +(cid:96) (6.34) 1 1 2 2 1 2 1 2 has been assumed. 6.2 Construction of Clebsch-Gordan Coefficients We will now construct the Clebsch-Gordan coefficients. The result of this construction will include allthepropertiespreviewedabove. Atthispointweliketostressthattheconstructionwillbebased onthetheorems(5.71–5.81)statedabove,i.e.,willbebasedsolelyonthecommutationpropertiesof the operators(cid:126)J and J(cid:126)(k). We can, therefore, also apply the results, and actually also the properties ofClebsch-Gordan coefficientsstatedabove,tocompositesystemsinvolvingspin-1 states. Asimilar 2 construction will also be applied to composite systems governed by other symmetry groups, e.g., the group SU(3) in case of meson multiplets involving two quarks, or baryons multiplets involving three quarks. 148 Addition of Angular Momenta and Spin For the construction of Y we will need the operators JM J± = J1 + iJ2 . (6.35) The construction assumes a particular choice of J ∈ {|(cid:96) −(cid:96) |, |(cid:96) −(cid:96) |+1,...(cid:96) +(cid:96) } and for 1 2 1 2 1 2 such J–value seeks an expansion (6.18) which satisfies J Y ((cid:96) ,(cid:96) |Ω ,Ω ) = 0 (6.36) + JJ 1 2 1 2 J Y ((cid:96) ,(cid:96) |Ω ,Ω ) = (cid:126)JY ((cid:96) ,(cid:96) |Ω ,Ω ) . (6.37) 3 JJ 1 2 1 2 JJ 1 2 1 2 The solution needs to be normalized. Having determined such Y we then construct the whole JJ family of functions X = {Y ((cid:96) ,(cid:96) |Ω ,Ω ), M = −J,−J +1,...J} by applying repeatedly J JM 1 2 1 2 J−YJM+1((cid:96)1,(cid:96)2|Ω1,Ω2) = (cid:126) (J +M +1)(J −M)YJM((cid:96)1,(cid:96)2|Ω1,Ω2) . (6.38) (cid:112) for M = J −1,J −2,...,−J. WeembarkonthesuggestedconstructionforthechoiceJ = (cid:96) +(cid:96) . Wefirstseekanunnormalized 1 2 solutionG andlaternormalize. TofindG westartfromtheobservationthatG representsthe JJ JJ JJ state with the largest possible quantum number J = (cid:96) + (cid:96) with the largest possible component 1 2 M = (cid:96) + (cid:96) along the z–axis. The corresponding classical total angular momentum vector(cid:126)J 1 2 class would be obtained by aligning both J(cid:126)(1) and J(cid:126)(2) also along the z–axis and adding these two class class vectors. Quantum mechanically this corresponds to a state G ((cid:96) ,(cid:96) |Ω ,Ω ) = Y (Ω )Y (Ω ) (6.39) (cid:96)1+(cid:96)2,(cid:96)1+(cid:96)2 1 2 1 2 (cid:96)1(cid:96)1 1 (cid:96)2(cid:96)2 2 which we will try for a solution of (6.37). For this purpose we insert (6.39) into (6.37) and replace according to (6.11) J by J(1) + J(2). We obtain using (5.66,5.68) + + + J(1) + J(2) Y (Ω )Y (Ω ) (6.40) (cid:16) + + (cid:17) (cid:96)1(cid:96)1 1 (cid:96)2(cid:96)2 2 = J(1)Y (Ω ) Y (Ω ) + Y (Ω ) J(2)Y (Ω ) = 0 . (cid:16) + (cid:96)1(cid:96)1 1 (cid:17) (cid:96)2(cid:96)2 2 (cid:96)1(cid:96)1 1 (cid:16) + (cid:96)2(cid:96)2 2 (cid:17) Similarly, we can demonstrate condition (6.25) using (6.11) and (5.64) J(1) + J(2) Y (Ω )Y (Ω ) (cid:16) 3 3 (cid:17) (cid:96)1(cid:96)1 1 (cid:96)2(cid:96)2 2 = J(1)Y (Ω ) Y (Ω ) + Y (Ω ) J(2)Y (Ω ) (cid:16) 3 (cid:96)1(cid:96)1 1 (cid:17) (cid:96)2(cid:96)2 2 (cid:96)1(cid:96)1 1 (cid:16) 3 (cid:96)2(cid:96)2 2 (cid:17) = (cid:126)((cid:96) + (cid:96) )Y (Ω )Y (Ω ) . (6.41) 1 2 (cid:96)1(cid:96)1 1 (cid:96)2(cid:96)2 2 In fact, we can also demonstrate using (??) that G ((cid:96) ,(cid:96) |Ω ,Ω ) is normalized (cid:96)1+(cid:96)2,(cid:96)1+(cid:96)2 1 2 1 2 (cid:90) dΩ1 (cid:90) dΩ2G(cid:96)1+(cid:96)2,(cid:96)1+(cid:96)2((cid:96)1,(cid:96)2|Ω1,Ω2) = (cid:18)(cid:90) dΩ1Y(cid:96)1(cid:96)1(Ω1)(cid:19) (cid:18)(cid:90) dΩ2Y(cid:96)2(cid:96)2(Ω2)(cid:19) = 1 . (6.42) We, therefore, have shown Y ((cid:96) ,(cid:96) |Ω ,Ω ) = Y (Ω )Y (Ω ) . (6.43) (cid:96)1+(cid:96)2,(cid:96)1+(cid:96)2 1 2 1 2 (cid:96)1(cid:96)1 1 (cid:96)2(cid:96)2 2 6.2: Construction of Clebsch-Gordan Coefficients 149 Wenowemployproperty(6.38)toconstructthefamilyoffunctionsB = {Y ((cid:96) ,(cid:96) |(cid:10) ,(cid:10) ), M = (cid:96)(cid:49)+(cid:96)(cid:50) (cid:96)(cid:49)+(cid:96)(cid:50)M (cid:49) (cid:50) (cid:49) (cid:50) −((cid:96) +(cid:96) ),...,((cid:96) +(cid:96) )}. We demonstrate the procedure explicitly only for M = (cid:96) +(cid:96) −1. (cid:49) (cid:50) (cid:49) (cid:50) √ 1 2 T√he r.h.s. of (6.38) yields with J− = J−(1) + J−(1) the expression (cid:126) 2(cid:96)1Y(cid:96)1(cid:96)1−1(Ω1)Y(cid:96)2(cid:96)2(Ω2) + (cid:126) 2(cid:96)2Y(cid:96)1(cid:96)1−1(Ω1)Y(cid:96)2(cid:96)2−1(Ω2). The l.h.s. of (6.38) yields (cid:126)(cid:112)2((cid:96)1+(cid:96)2)Y(cid:96)1+(cid:96)2(cid:96)1+(cid:96)2−1((cid:96)1,(cid:96)2|Ω1,Ω2). One obtains then Y(cid:96)1+(cid:96)2(cid:96)1+(cid:96)2−1((cid:96)1,(cid:96)2|Ω1,Ω2) = (6.44) (cid:113)(cid:96)1(cid:96)+1(cid:96)2 Y(cid:96)1(cid:96)1−1(Ω1)Y(cid:96)2(cid:96)2(Ω2) +(cid:113)(cid:96)1(cid:96)+2(cid:96)2 Y(cid:96)1(cid:96)1(Ω1)Y(cid:96)2(cid:96)2−1(Ω2) . This construction can be continued to obtain all 2((cid:96) +(cid:96) ) + 1 elements of B and, thereby, 1 2 (cid:96)(cid:49)+(cid:96)(cid:50) all the Clebsch-Gordan coefficients ((cid:96) +(cid:96) M|(cid:96) m (cid:96) m ). We have provided in Table 1 the explicit 1 2 1 1 2 2 form of Y ((cid:96) (cid:96) |Ω Ω ) for (cid:96) = 2 and (cid:96) = 1 to illustrate the construction. The reader should JM 1 2 1 2 1 2 familiarize himself with the entries of the Table, in particular, with the symmetry pattern and with the terms Y Y contributing to each Y . (cid:96)1m1 (cid:96)2m2 JM WeliketoconstructnowthefamilyoftotalangularmomentumfunctionsB(cid:96)(cid:49)+(cid:96)(cid:50)−(cid:49) = {Y(cid:96)(cid:49)+(cid:96)(cid:50)−(cid:49)M((cid:96)(cid:49),(cid:96)(cid:50)|(cid:10)(cid:49),(cid:10)(cid:50)), M = −((cid:96) + (cid:96) − (cid:49)),...,((cid:96) + (cid:96) − (cid:49))}. We seek for this purpose first an unnormalized solution (cid:49) (cid:50) (cid:49) (cid:50) G(cid:96)1+(cid:96)2−1(cid:96)1+(cid:96)2−1 of (6.36, 6.37). According to the condition (6.21) we set G(cid:96)1+(cid:96)2−1(cid:96)1+(cid:96)2−1((cid:96)1(cid:96)2|Ω1Ω2) = Y(cid:96)1(cid:96)1−1(Ω1)Y(cid:96)2(cid:96)2(Ω2) + cY(cid:96)1(cid:96)1(Ω1)Y(cid:96)2(cid:96)2−1(Ω2) (6.45) for some unknown constant c. One can readily show that (6.37) is satisfied. To demonstrate (6.36) we proceed as above and obtain (cid:16)J+(1)Y(cid:96)1(cid:96)1−1(Ω1)(cid:17)Y(cid:96)2(cid:96)2(Ω2) + cY(cid:96)1(cid:96)1(Ω1)(cid:16)J+(2)Y(cid:96)2(cid:96)2−1(Ω2)(cid:17) = 2(cid:96) + c 2(cid:96) Y (Ω )Y (Ω ) = 0 . (6.46) (cid:16)(cid:112) 1 (cid:112) 2(cid:17) (cid:96)1(cid:96)1 1 (cid:96)2(cid:96)2 2 Tosatisfythisequationoneneedstochoosec = −(cid:112)(cid:96)1/(cid:96)2. WehavetherebydeterminedG(cid:96)1+(cid:96)2−1(cid:96)1+(cid:96)2−1 in (6.45). Normalization yields furthermore Y(cid:96)1+(cid:96)2−1(cid:96)1+(cid:96)2−1((cid:96)1(cid:96)2|Ω1Ω2) (6.47) (cid:96) (cid:96) = (cid:114)(cid:96) +2(cid:96) Y(cid:96)1(cid:96)1−1(Ω1)Y(cid:96)2(cid:96)2(Ω2) − (cid:114)(cid:96) +1(cid:96) Y(cid:96)1(cid:96)1(Ω1)Y(cid:96)2(cid:96)2−1(Ω2) . 1 2 1 2 This expression is orthogonal to (6.39) as required by (6.27). Expression (6.47) can serve now to obtain recursively the elements of the family B(cid:96)(cid:49)+(cid:96)(cid:50)−(cid:49) for M = (cid:96) +(cid:96) −2,(cid:96) +(cid:96) −3,...,−((cid:96) +(cid:96) −1). Having constructed this family we have determined 1 2 1 2 1 2 the Clebsch-Gordan coefficients ((cid:96) + (cid:96) − 1M|(cid:96) m (cid:96) m ). The result is illustrated for the case 1 2 1 1 2 2 (cid:96) = 2, (cid:96) = 1 in Table 1. 1 2 One can obviously continue the construction outlined to determine Y(cid:96)1+(cid:96)2−2(cid:96)1+(cid:96)2−2, etc. and all total angular momentum functions for a given choice of (cid:96) and (cid:96) . 1 2 Exercise 6.2.1: Construct following the procedure above the three functions Y ((cid:96) ,(cid:96) |Ω ,Ω2) JM 1 2 1 for M = (cid:96) +(cid:96) − 2 and J = (cid:96) +(cid:96) ,(cid:96) +(cid:96) − 1,(cid:96) +(cid:96) − 2. Show that the resulting functions 1 2 1 2 1 2 1 2 are orthonormal. 150 Addition of Angular Momenta and Spin Y (Ω )Y (Ω ) 22 1 11 2 Y (2,1|Ω ,Ω2) 1 33 1 Y (Ω )Y (Ω ) Y (Ω )Y (Ω ) 21 1 11 2 22 1 10 2 Y (2,1|Ω ,Ω2) 2 (cid:39) 0.816497 1 (cid:39) 0.57735 32 1 (cid:113)3 (cid:113)3 Y (2,1|Ω ,Ω2) − 1 (cid:39) −0.57735 2 (cid:39) 0.816497 22 1 (cid:113)3 (cid:113)3 Y20(Ω1)Y11(Ω2) Y21(Ω1)Y10(Ω2) Y22(Ω1)Y1−1(Ω2) Y (2,1|Ω ,Ω2) 2 (cid:39) 0.632456 8 (cid:39) 0.730297 1 (cid:39) 0.258199 31 1 (cid:113)5 (cid:113)15 (cid:113)15 Y (2,1|Ω ,Ω2) − 1 (cid:39) −0.707107 1 (cid:39) 0.408248 1 (cid:39) 0.57735 21 1 (cid:113)2 (cid:113)6 (cid:113)3 Y (2,1|Ω ,Ω2) 1 (cid:39) 0.316228 − 3 (cid:39) −0.547723 3 (cid:39) 0.774597 11 1 (cid:113)10 (cid:113)10 (cid:113)5 Y2−1(Ω1)Y11(Ω2) Y20(Ω1)Y10(Ω2) Y21(Ω1)Y1−1(Ω2) Y (2,1|Ω ,Ω2) 1 (cid:39) 0.447214 3 (cid:39) 0.774597 1 (cid:39) 0.447214 30 1 (cid:113)5 (cid:113)5 (cid:113)5 Y (2,1|Ω ,Ω2) − 1 (cid:39) −0.707107 0 1 (cid:39) 0.707107 20 1 (cid:113)2 (cid:113)2 Y (2,1|Ω ,Ω2) 3 (cid:39) 0.547723 − 2 (cid:39) −0.632456 3 (cid:39) 0.547723 10 1 (cid:113)10 (cid:113)5 (cid:113)10 Y2−2(Ω1)Y11(Ω2) Y2−1(Ω1)Y10(Ω2) Y20(Ω1)Y1−1(Ω2) Y3−1(2,1|Ω1,Ω2) (cid:113)115 (cid:39) 0.258199 (cid:113)185 (cid:39) 0.730297 (cid:113)25 (cid:39) 0.632456 Y2−1(2,1|Ω1,Ω2) −(cid:113)13 (cid:39) −0.57735 −(cid:113)16 (cid:39) −0.408248 (cid:113)12 (cid:39) 0.707107 Y1−1(2,1|Ω1,Ω2) (cid:113)35 (cid:39) 0.774597 −(cid:113)130 (cid:39) −0.547723 (cid:113)110 (cid:39) 0.316228 Y2−2(Ω1)Y10(Ω2) Y2−1(Ω1)Y1−1(Ω2) Y3−2(2,1|Ω1,Ω2) (cid:113)13 (cid:39) 0.57735 (cid:113)23 (cid:39) 0.816497 Y2−2(2,1|Ω1,Ω2) −(cid:113)23 (cid:39) −0.816497 (cid:113)13 (cid:39) 0.57735 Y2−2(Ω1)Y1−1(Ω2) Y3−3(2,1|Ω1,Ω2) 1 Table 6.1: Some explicit analytical and numerical values of Clebsch-Gordan coefficients and their relationship to the total angular momentum wave functions and single particle angular momentum wave functions.
Description: