Theoretical and Mathematical Physics Paul Busch Pekka Lahti Juha-Pekka Pellonpää Kari Ylinen Quantum Measurement Quantum Measurement Theoretical and Mathematical Physics Theseriesfoundedin1975andformerly(until2005)entitledTextsandMonographsin Physics (TMP) publishes high-level monographs in theoretical and mathematical phy- sics.ThechangeoftitletoTheoreticalandMathematicalPhysics(TMP)signalsthatthe series is a suitable publication platform for both the mathematical and the theoretical physicist. Thewider scope of the series is reflected by the composition ofthe editorial board, comprising both physicists and mathematicians. The books, written in a didactic style and containing a certain amount of elementary background material, bridge the gap between advanced textbooks and research monographs. They can thus serve as basis for advanced studies, not only for lectures and seminars at graduate level, but also for scientists entering a field of research. Editorial Board W. Beiglböck, Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany P. Chrusciel, Gravitational Physics, University of Vienna, Vienna, Austria J.-P. Eckmann, Département de Physique Théorique, Université de Genéve, Geneve, Switzerland H. Grosse, Institute of Theoretical Physics, University of Vienna, Vienna, Austria A. Kupiainen, Department of Mathematics, University of Helsinki, Helsinki, Finland H. Löwen, Institute of Theoretical Physics, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany M. Loss, School of Mathematics, Georgia Institute of Technology, Atlanta, USA N.A. Nekrasov, IHÉS, Bures-sur-Yvette, France M. Ohya, Tokyo University of Science, Noda, Japan M. Salmhofer, Institute of Theoretical Physics, University of Heidelberg, Heidelberg, Germany S. Smirnov, Mathematics Section, University of Geneva, Geneva, Switzerland L.Takhtajan,DepartmentofMathematics,StonyBrookUniversity,StonyBrook,USA J. Yngvason, Institute of Theoretical Physics, University of Vienna, Vienna, Austria More information about this series at http://www.springer.com/series/720 Paul Busch Pekka Lahti (cid:129) ää Juha-Pekka Pellonp Kari Ylinen (cid:129) Quantum Measurement 123 PaulBusch Juha-Pekka Pellonpää DepartmentofMathematics,YorkCentrefor Department ofPhysics andAstronomy, QuantumTechnologies TurkuCentrefor Quantum Physics University of York University of Turku York Turku UK Finland Pekka Lahti KariYlinen Department ofPhysics andAstronomy, Department ofMathematics andStatistics TurkuCentrefor Quantum Physics University of Turku University of Turku Turku Turku Finland Finland ISSN 1864-5879 ISSN 1864-5887 (electronic) Theoretical andMathematical Physics ISBN978-3-319-43387-5 ISBN978-3-319-43389-9 (eBook) DOI 10.1007/978-3-319-43389-9 LibraryofCongressControlNumber:2016946315 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface Quantum Measurement is a book on the mathematical and conceptual foundations ofquantummechanics,withafocusonitsmeasurementtheory.Ithasbeenwritten primarily for students of physics and mathematics with a taste for mathematical rigour and conceptual clarity in their quest to understand quantum mechanics. We hopeitwillalsoserveasausefulreferencetextforresearchersworkinginabroad range of subfields of quantum physics and its foundations. The exposition is divided into four parts entitled Mathematics (Chaps. 2–8), Elements (Chaps. 9–13), Realisations (Chaps. 14–19), and Foundations (Chaps. 20–23). An overview of each part is given in the Introduction, Chap. 1, and each chapter begins with a brief non-technical outline of its contents. A glance through the table of contents shows that different chapters require somewhat different backgrounds and levels of prerequisite knowledge on the part of the reader. The material is arranged in a logical (linear) order, so it should be possible to read the book from beginning to end and gain the relevant skills along the way, either from the text itself or occasionally from other sources cited. However, the reader should also be able to start with any part or chapter of her or his interest and turn to earlier parts where needed. PartIisdesignedtobeaccessibletoareaderpossessinganundergraduatelevelof familiarity with linear algebra and elementary metric space theory. Chaps. 2 and 3 canbereadasanintroductiontothepartofHilbertspacetheorywhichdoesnotneed measure and integration theory. The latter becomes an essential tool from Chap. 4 onwards, so we give a summary of the key concepts and some relevant results. StartingwithSect.4.10,andmoreessentiallyfromChap.6on,weoccasionallyneed thebasicnotionsofgeneraltopologyandtopologicalvectorspaces.Elementsofthe theoryofC(cid:1)-algebrasandvonNeumannalgebrasarebrieflysummarisedinChap.6, buttheirrole isvery limited inthe sequel. While prior study of quantum mechanics might be found useful, it is not a prerequisite for a successful study of the book. The essence of the work is the development of tools for a rigorous approach to central questions of quantum mechanics,whichareoftenconsideredinamoreintuitiveandheuristicstyleinthe v vi Preface literature.Inthiswaytheauthorshopetocontributetotheclarificationofsomekey issues in the discussions concerningthe foundations and interpretation ofquantum mechanics. Thebibliographyisfairlyextensive,butitdoesnotclaimtobecomprehensivein any sense. It contains many works on general background and key papers in the developmentofthefieldofquantummeasurement.Naturally,especiallymostofthe morerecentreferencesrelatetothetopicscentraltothisbook,inwhichtheauthors and their collaborators have also had their share. The reader will notice that the word measure is used in a variety of meanings, which should, however, be clear from the context. A measure as a mathematical conceptisasetfunctionwhichcanbespecifiedbygivingthevaluespace:we talk about (positive) measures, probability measures, complex measures, operator measures, etc. We also speak about the measures of quantifiable features such as accuracy, disturbance, or unsharpness. The etymologically related word measure- mentmaybetakentorefertoaprocess,butitisalsogivenaprecisemathematical content that can be viewed as an abstraction of this process. Muchofthematerialinthisbookhasbeenextractedanddevelopedfromvarious series of lecture notes for graduate and postgraduate courses in mathematics and theoretical physicsheld over many years attheuniversities ofHelsinki,Turkuand York. In its totality, however, the work is considerably more comprehensive than the union of these courses. It reflects the development of its subject from the early daysofquantummechanicswhiletheselectionoftopicsisinevitablyinfluencedby theauthors’researchinterests.Infact,thebookemergedinitspresentshapefroma decade-long collective effort alongside our investigations into quantum measure- menttheoryanditsapplications.Atthispointwewishtoexpressourdeepgratitude and appreciation to the many colleagues, scientific friends and, not least, our stu- dents with whom we have been fortunate to collaborate and discuss fundamental problems of quantum physics. York, UK Paul Busch Turku, Finland Pekka Lahti Juha-Pekka Pellonpää Kari Ylinen Contents 1 Introduction... .... .... ..... .... .... .... .... .... ..... .... 1 1.1 Background and Content . .... .... .... .... .... ..... .... 1 1.2 Statistical Duality—an Outline. .... .... .... .... ..... .... 5 References. .... .... .... ..... .... .... .... .... .... ..... .... 9 Part I Mathematics 2 Rudiments of Hilbert Space Theory. .... .... .... .... ..... .... 13 2.1 Basic Notions and the Projection Theorem.... .... ..... .... 13 2.2 The Fréchet–Riesz Theorem and Bounded Linear Operators ... 17 2.3 Strong, Weak, and Monotone Convergence of Nets of Operators .. .... ..... .... .... .... .... .... ..... .... 20 2.4 The Projection Lattice PðHÞ .. .... .... .... .... ..... .... 22 2.5 The Square Root of a Positive Operator.. .... .... ..... .... 24 2.6 The Polar Decomposition of a Bounded Operator .. ..... .... 26 2.7 Orthonormal Sets .. ..... .... .... .... .... .... ..... .... 27 2.8 Direct Sums of Hilbert Spaces . .... .... .... .... ..... .... 31 2.9 Tensor Products of Hilbert Spaces .. .... .... .... ..... .... 32 2.10 Exercises. .... .... ..... .... .... .... .... .... ..... .... 34 Reference . .... .... .... ..... .... .... .... .... .... ..... .... 36 3 Classes of Compact Operators. .... .... .... .... .... ..... .... 37 3.1 Compact and Finite Rank Operators. .... .... .... ..... .... 37 3.2 The Spectral Representation of Compact Selfadjoint Operators .... .... .... .... .... .... ..... .... 40 3.3 The Hilbert–Schmidt Operator Class HSðHÞ.. .... ..... .... 45 3.4 The Trace Class TðHÞ... .... .... .... .... .... ..... .... 47 3.5 Connection of the Ideals TðHÞ and HSðHÞ with the Sequence Spaces ‘1 and ‘2. .... .... .... ..... .... 49 3.6 The Dualities CðHÞ(cid:1) ¼TðHÞ and TðHÞ(cid:1) ¼LðHÞ . ..... .... 52 vii viii Contents 3.7 Linear Operators on Hilbert Tensor Products and the Partial Trace..... .... .... .... .... .... ..... .... 55 3.8 The Schmidt Decomposition of an Element of H (cid:3)H .. .... 59 1 2 3.9 Exercises. .... .... ..... .... .... .... .... .... ..... .... 61 4 Operator Integrals and Spectral Representations: The Bounded Case . .... ..... .... .... .... .... .... ..... .... 63 4.1 Classes of Sets and Positive Measures ... .... .... ..... .... 63 4.2 Measurable Functions.... .... .... .... .... .... ..... .... 65 4.3 Integration with Respect to a Positive Measure .... ..... .... 65 4.4 The Hilbert Space L2ðΩ;A;μÞ. .... .... .... .... ..... .... 68 4.5 Complex Measures and Integration.. .... .... .... ..... .... 69 4.6 Positive Operator Measures ... .... .... .... .... ..... .... 71 4.7 Positive Operator Bimeasures.. .... .... .... .... ..... .... 75 4.8 Integration of Bounded Functions with Respect to a Positive Operator Measure. .... .... .... .... ..... .... 80 4.9 The Connection Between (Semi)Spectral Measures and (Semi)Spectral Functions.. .... .... .... .... ..... .... 83 4.10 A Riesz–Markov–Kakutani Type Representation Theorem for Positive Operator Measures. .... .... .... .... ..... .... 85 4.11 The Spectral Representation of Bounded Selfadjoint Operators .... .... ..... .... .... .... .... .... ..... .... 86 4.12 The Spectrum of a Bounded Operator ... .... .... ..... .... 93 4.13 The Spectral Representations of Unitary and Other Normal Operators .... .... ..... .... .... .... .... .... ..... .... 94 4.14 Exercises. .... .... ..... .... .... .... .... .... ..... .... 96 References. .... .... .... ..... .... .... .... .... .... ..... .... 99 5 Operator Integrals and Spectral Representations: The Unbounded Case ... ..... .... .... .... .... .... ..... .... 101 5.1 Elementary Notes on Unbounded Operators... .... ..... .... 101 5.2 Integration of Unbounded Functions with Respect to Positive Operator Measures . .... .... .... .... ..... .... 104 5.3 Integration of Unbounded Functions with Respect to Projection Valued Measures. .... .... .... .... ..... .... 107 5.4 The Cayley Transform ... .... .... .... .... .... ..... .... 110 5.5 The Spectral Representation of an Unbounded Selfadjoint Operator. .... .... ..... .... .... .... .... .... ..... .... 113 5.6 The Support of the Spectral Measure of a Selfadjoint Operator. .... .... ..... .... .... .... .... .... ..... .... 115 5.7 Applying a Borel Function to a Selfadjoint Operator ..... .... 117 5.8 One-Parameter Unitary Groups and Stone’s Theorem..... .... 119 5.9 Taking Stock: Hilbert Space Theory and Its Use in Quantum Mechanics... .... .... .... .... .... ..... .... 123 Contents ix 5.10 Exercises. .... .... ..... .... .... .... .... .... ..... .... 125 References. .... .... .... ..... .... .... .... .... .... ..... .... 126 6 Miscellaneous Algebraic and Functional Analytic Techniques. .... 127 6.1 Normal and Positive Linear Maps on LðHÞ... .... ..... .... 127 6.2 Basic Notions of the Theory of C(cid:1)-algebras and Their Representations.... ..... .... .... .... .... .... ..... .... 130 6.3 Algebraic Tensor Products of Vector Spaces .. .... ..... .... 134 6.4 Completions.. .... ..... .... .... .... .... .... ..... .... 135 6.5 Exercises. .... .... ..... .... .... .... .... .... ..... .... 135 References. .... .... .... ..... .... .... .... .... .... ..... .... 136 7 Dilation Theory.... .... ..... .... .... .... .... .... ..... .... 137 7.1 Completely Positive Linear Maps... .... .... .... ..... .... 137 7.2 A Bilinear Dilation Theorem .. .... .... .... .... ..... .... 139 7.3 The Stinespring and Naimark Dilation Theorems... ..... .... 144 7.4 Normal Completely Positive Operators from LðHÞ into LðKÞ.... .... .... .... .... .... ..... .... 147 7.5 Naimark Projections of Operator Integrals .... .... ..... .... 152 7.6 Operations and Instruments.... .... .... .... .... ..... .... 153 7.7 Measurement Dilation.... .... .... .... .... .... ..... .... 159 7.8 Exercises. .... .... ..... .... .... .... .... .... ..... .... 161 References. .... .... .... ..... .... .... .... .... .... ..... .... 162 8 Positive Operator Measures: Examples.. .... .... .... ..... .... 163 8.1 The Canonical Spectral Measure and Its Fourier-Plancherel Transform.... .... ..... .... .... .... .... .... ..... .... 163 8.2 Restrictions of Spectral Measures... .... .... .... ..... .... 166 8.3 Smearings and Convolutions... .... .... .... .... ..... .... 168 8.4 Phase Space Operator Measures.... .... .... .... ..... .... 172 8.5 Moment Operators and Spectral Measures .... .... ..... .... 175 8.6 Semispectral Measures and Direct Integral Hilbert Spaces . .... 178 8.7 A Dirac Type Formalism: An Elementary Approach ..... .... 182 8.8 Exercises. .... .... ..... .... .... .... .... .... ..... .... 185 References. .... .... .... ..... .... .... .... .... .... ..... .... 186 Part II Elements 9 States, Effects and Observables .... .... .... .... .... ..... .... 191 9.1 States ... .... .... ..... .... .... .... .... .... ..... .... 192 9.2 Effects... .... .... ..... .... .... .... .... .... ..... .... 196 9.3 Observables .. .... ..... .... .... .... .... .... ..... .... 200 9.4 State Changes. .... ..... .... .... .... .... .... ..... .... 208 9.5 Compound Systems ..... .... .... .... .... .... ..... .... 213 9.6 Exercises. .... .... ..... .... .... .... .... .... ..... .... 221 References. .... .... .... ..... .... .... .... .... .... ..... .... 223