ebook img

Quantum Information Theory By Michael Aaron Nielsen DISSERTATION PDF

260 Pages·2000·2.02 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Information Theory By Michael Aaron Nielsen DISSERTATION

Quantum Information Theory By Michael Aaron Nielsen B.Sc., University of Queensland, 1993 B.Sc. (First Class Honours), Mathematics, University of Queensland, 1994 M.Sc., Physics, University of Queensland, 1998 DISSERTATION Submitted in Partial Ful(cid:12)llment of the Requirements for the Degree of Doctor of Philosophy Physics The University of New Mexico Albuquerque, New Mexico, USA December 1998 (cid:13)c1998, Michael Aaron Nielsen ii Dedicated to the memory of Michael Gerard Kennedy 24 January 1951 { 3 June 1998 iii Acknowledgments It is a great pleasure to thank the many people who have contributed to this Dissertation. My deepest thanks goes to my friends and family, especially my parents, Howard and Wendy, for their support and encouragement. Warm thanks also to the many other people who have con- tributed to this Dissertation, especially Carl Caves, who has been a terri(cid:12)c mentor, colleague, and friend; to Gerard Milburn, who got me started in physics, in research, and in quantum in- formation; and to Ben Schumacher, whose boundless enthusiasm and encouragement has provided so much inspiration for my research. Throughout my graduate career I have had the pleasure of many enjoyable and helpful discussions with Howard Barnum, Ike Chuang, Chris Fuchs, Ray- mond Laflamme, Manny Knill, Mark Tracy, and Wojtek Zurek. In particular, Howard Barnum, Carl Caves, Chris Fuchs, Manny Knill, and Ben Schumacher helped me learn much of what I know about quantum operations, entropy, and distance measures for quantum information. The material reviewedinchapters3through5Ilearntinnosmallmeasurefromthesepeople. Manyotherfriends and colleagues have contributed to this Dissertation. A partial list includes Chris Adami, Dorit Aharonov,JamesAnglin,DavidBeckman,PaulBenio(cid:11),CharlesBennett,SamBraunstein,Nicholas Cerf, Ignacio Cirac, Richard Cleve, John Cortese, Vageli Coutsias, Wim van Dam, Ivan Deutsch, DavidDiVincenzo,RobDuncan,MarkEttinger,BettyFry,JackGlassman,DanielGottesman,Bob Gri(cid:14)ths,GaryHerling,TomHess,AlexanderHolevo,PeterH(cid:28)yer,RichardHughes,ChrisJarzynski, BradJohnson,Je(cid:11)Kimble,AlexeiKitaev,Andrew Landahl,Debbie Leung,SethLloyd,Hoi-Kwong Lo, Hideo Mabuchi, Eleanor Maes, Norine Meyer, Cesar Miquel, Juan Pablo Paz, Mitch Porter, John Preskill,Peter Shor, JohnSmolin, Alain Tapp, BarbaraTerhal, Amnon Ta-Shma, Mike West- moreland,BarbyWoods,BillWootters,ChristofZalka,andPeterZoller. Myespecialthanksalsoto thosecreativepeoplewithoutwhomthephysicsofinformationwouldnotexistasa(cid:12)eldofresearch; especial influences on my thinking were the writings of Paul Benio(cid:11), Charles Bennett, Gilles Bras- sard, David Deutsch, Artur Ekert, Richard Feynman, Alexander Holevo, Richard Jozsa, Rolf Lan- dauer, Go¨ran Lindblad, Seth Lloyd, Asher Peres, Ben Schumacher, Peter Shor, John Wheeler, Stephen Wiesner, Bill Wootters, and Wojtek Zurek. Michael Aaron Nielsen The University of New Mexico December 1998 iv Quantum Information Theory By Michael Aaron Nielsen Abstract of Dissertation Submitted in Partial Ful(cid:12)llment of the Requirements for the Degree of Doctor of Philosophy Physics The University of New Mexico Albuquerque, New Mexico, USA December 1998 v Quantum Information Theory By Michael Aaron Nielsen B.Sc., University of Queensland, 1993 B.Sc. (First Class Honours), Mathematics, University of Queensland, 1994 M.Sc., Physics, University of Queensland, 1998 Abstract Quantum information theory is the study of the achievable limits of information processing within quantum mechanics. Many di(cid:11)erent types of information can be accommodated within quantum mechanics, including classical information, coherent quantum information, and entanglement. Ex- ploring the rich variety of capabilities allowed by these types of information is the subject of quan- tum information theory, and of this Dissertation. In particular, I demonstrate several novel limits to the information processing ability of quantum mechanics. Results of especial interest include: the demonstrationof limitations to the class of measurements which may be performed in quantum mechanics; a capacity theorem giving achievable limits to the transmission of classical information through a two-way noiseless quantum channel; resource bounds on distributed quantum compu- tation; a new proof of the quantum noiseless channel coding theorem; an information-theoretic characterizationof the conditions under which quantum error-correctionmay be achieved; an anal- ysis ofthe thermodynamic limits to quantumerror-correction,andnew bounds onchannelcapacity for noisy quantum channels. vi Contents List of figures viii Nomenclature and notation ix I Fundamentals of quantum information 1 1 The physics of information 3 1.1 A collision of ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 What observables are realizable as quantum measurements? . . . . . . . . . . . . . 5 1.3 Overview of the (cid:12)eld of quantum information . . . . . . . . . . . . . . . . . . . . . 8 1.4 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Quantum information, science, and technology . . . . . . . . . . . . . . . . . . . . . 12 2 Quantum information: fundamentals 19 2.1 Quantum bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Superdense coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Quantum teleportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Quantum computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 What quantum measurements may be realized? . . . . . . . . . . . . . . . . . . . . 28 2.6 Experimental quantum information processing . . . . . . . . . . . . . . . . . . . . . 30 2.6.1 Proposals for quantum information processing . . . . . . . . . . . . . . . . 31 2.6.2 Experimental demonstration of quantum teleportation using NMR . . . . . 36 3 Quantum operations 41 3.1 Quantum operations: fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.1 Quantum operations on a single qubit . . . . . . . . . . . . . . . . . . . . . 50 3.2 Freedom in the operator-sum representation . . . . . . . . . . . . . . . . . . . . . . 51 3.3 Teleportation as a quantum operation. . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4 Quantum process tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.1 One qubit example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.5 The POVM formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.6 Beyond quantum operations? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 vii 4 Entropy and information 66 4.1 Shannon entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 Basic properties of entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2.1 The binary entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2.2 The relative entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2.3 Mutual information and conditional entropy . . . . . . . . . . . . . . . . . 69 4.2.4 The data processing inequality . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3 Von Neumann entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.1 Quantum relative entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.2 Basic properties of entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3.3 Measurements and entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.3.4 The entropy of ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.3.5 Subadditivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3.6 Concavity of the entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4 Strong subadditivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5 Distance measures for quantum information 89 5.1 Distance measures for classical information . . . . . . . . . . . . . . . . . . . . . . . 90 5.2 How close are two quantum states? . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.2.1 Absolute distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.2.2 Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.3 Distance measures derived from (cid:12)delity . . . . . . . . . . . . . . . . . . . . 98 5.2.4 Relationships between distance measures . . . . . . . . . . . . . . . . . . . 99 5.3 Dynamic measures of information preservation . . . . . . . . . . . . . . . . . . . . . 100 5.3.1 Continuity relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.2 Chaining quantum errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.4 Alternative view of the dynamic measures . . . . . . . . . . . . . . . . . . . . . . . 105 II Bounds on quantum information transmission 108 6 Quantum communication complexity 110 6.1 The Holevo bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.2 Capacity theorem for qubit communication . . . . . . . . . . . . . . . . . . . . . . . 116 6.3 Communication complexity of the inner product . . . . . . . . . . . . . . . . . . . . 119 6.3.1 Converting exact protocols into clean form . . . . . . . . . . . . . . . . . . 120 6.3.2 Reduction from the communication problem . . . . . . . . . . . . . . . . . 121 6.3.3 Lower bounds for bit protocols . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.4 Coherent quantum communication complexity . . . . . . . . . . . . . . . . . . . . . 122 6.4.1 Coherent communication complexity of the quantum Fourier transform . . 123 6.4.2 A general lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.5 A uni(cid:12)ed model for communication complexity. . . . . . . . . . . . . . . . . . . . . 127 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7 Quantum data compression 130 7.1 Schmidt numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.2 Typical subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.3 Quantum data compression theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 136 viii 7.4 Quantum data compression with a classical side channel . . . . . . . . . . . . . . . 139 7.5 Universal data compression with a classical side channel . . . . . . . . . . . . . . . 141 7.5.1 A dense subset of density operators with distinct entropies . . . . . . . . . 143 7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 8 Entanglement 147 8.1 Pure state entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 8.2 Mixed state entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.3 Entanglement: Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 9 Error correction and Maxwell’s demon 163 9.1 Entropy exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 9.2 Quantum Fano inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 9.3 The quantum data processing inequality . . . . . . . . . . . . . . . . . . . . . . . . 167 9.4 Quantum error correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 9.4.1 Shor’s code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 9.5 Information-theoretic conditions for error correction . . . . . . . . . . . . . . . . . . 175 9.6 Information-theoretic inequalities for quantum processes . . . . . . . . . . . . . . . 179 9.7 Quantum error correction and Maxwell’s demon . . . . . . . . . . . . . . . . . . . . 182 9.7.1 Error-correctionby a \Maxwell demon" . . . . . . . . . . . . . . . . . . . . 182 9.7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 9.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 10 The quantum channel capacity 189 10.1 Noisy channel coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 10.2 Classical noisy channels in a quantum setting . . . . . . . . . . . . . . . . . . . . . 191 10.3 Coherent information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 10.3.1 Properties of coherent information . . . . . . . . . . . . . . . . . . . . . . . 193 10.3.2 The entropy-(cid:12)delity lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 10.3.3 Quantum characteristics of the coherent information I . . . . . . . . . . . . 195 10.3.4 Quantum characteristics of the coherent information II . . . . . . . . . . . 197 10.4 Noisy channel coding revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 10.4.1 Mathematical formulation of noisy channel coding . . . . . . . . . . . . . . 199 10.5 Upper bounds on the channel capacity . . . . . . . . . . . . . . . . . . . . . . . . . 201 10.5.1 Unitary encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 10.5.2 General encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 10.5.3 Other encoding protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 10.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 10.7 Channels with a classical observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 10.7.1 Upper bounds on channel capacity . . . . . . . . . . . . . . . . . . . . . . . 210 10.7.2 Relationship to unobserved channel . . . . . . . . . . . . . . . . . . . . . . 213 10.7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 10.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 ix III Conclusion 218 11 Conclusion 220 11.1 Summary of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 11.2 Open problems in quantum information. . . . . . . . . . . . . . . . . . . . . . . . . 222 11.2.1 A unifying picture for quantum information. . . . . . . . . . . . . . . . . . 223 11.2.2 Classical physics and the decoherence program . . . . . . . . . . . . . . . . 225 11.2.3 Quantum information and statistical physics . . . . . . . . . . . . . . . . . 226 11.3 Concluding thought . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 A Purifications and the Schmidt decomposition 228 Bibliography 232 Index 245 x

Description:
Cerf, Ignacio Cirac, Richard Cleve, John Cortese, Vageli Coutsias, Wim van Dam, Ivan Deutsch, Finally, Wootters and coworkers have.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.