ebook img

Quantum Groups in Three-Dimensional Integrability PDF

330 Pages·2022·5.658 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Groups in Three-Dimensional Integrability

Theoretical and Mathematical Physics Atsuo Kuniba Quantum Groups in Three-Dimensional Integrability Quantum Groups in Three-Dimensional Integrability Theoretical and Mathematical Physics Thisseries,foundedin1975andformerlyentitled(until2005)TextsandMonographs inPhysics(TMP),publisheshigh-levelmonographsintheoreticalandmathematical physics.ThechangeoftitletoTheoreticalandMathematicalPhysics(TMP)signals thattheseriesisasuitablepublication platformforboth themathematical andthe theoreticalphysicist.Thewiderscopeoftheseriesisreflectedbythecomposition oftheeditorialboard,comprisingbothphysicistsandmathematicians. The books, written in a didactic style and containing a certain amount of elemen- tarybackgroundmaterial,bridgethegapbetweenadvancedtextbooksandresearch monographs.Theycanthusserveasabasisforadvancedstudies,notonlyforlectures andseminarsatgraduatelevel,butalsoforscientistsenteringafieldofresearch. SeriesEditors PiotrChrusciel,Wien,Austria Jean-PierreEckmann,Genève,Switzerland HaraldGrosse,Wien,Austria AnttiKupiainen,Helsinki,Finland HartmutLöwen,Düsseldorf,Germany KasiaRejzner,York,UK LeonTakhtajan,StonyBrook,NY,USA JakobYngvason,Wien,Austria Atsuo Kuniba Quantum Groups in Three-Dimensional Integrability AtsuoKuniba InstituteofPhysics,GraduateSchool ofArtsandSciences UniversityofTokyo Komaba,Tokyo,Japan ISSN 1864-5879 ISSN 1864-5887 (electronic) TheoreticalandMathematicalPhysics ISBN 978-981-19-3261-8 ISBN 978-981-19-3262-5 (eBook) https://doi.org/10.1007/978-981-19-3262-5 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SingaporePteLtd.2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Inintegrablesystemsinquantumfieldtheoryin(1+1)-dimensionalspacetimeand statisticalmechanicalmodelsontwo-dimensionallattices,acentralroleisplayedby theYang–Baxterequation.Itsalgebraicaspectsarenowwellunderstoodintermsof quantumgroups. Anobviouschallengeistoexplorethehigherdimensions.Thefirstattemptinsuch adirectionwasmadebyA.B.Zamolodchikovin1980wholaunchedthetetrahedron equation as a generalization of the Yang–Baxter equation in three dimensions. In his seminal work in 1983, Baxter referred to it as “immensely more complicated” and to Zamolodchikov’s conjectural solution which he proved as “what appears to be an extraordinary feat of intuition”. Over nearly forty years since the initial breakthrough, much effort has been made and many results continue to emerge despitethecomplexity. This book is the first monograph devoted to the subject. It is a selective but expositoryintroductiontoaquantumgrouptheoreticalapproachtothetetrahedron equationsandtheirrelativeswhichhavebeenshapedduringsuchdevelopments.It explainsthenaturaloriginoftheseequations,prototypicalsolutionsandtheirnotable aspects.Thelatterhalfofthebookalsoencompassesfeedbackstothetwo-oreven lowerone-dimensionalsystemsfromtheviewpointofmathematicalphysics. Thecontentsareelementaryandpresentedinacasualstyleforthesakeofread- ability.Asaresult,asubstantialpartofthetexthasbecomeacollectionofalgebraic manipulations, which are straightforward in principle but sometimes too tedious withoutthehelpofacomputer.Hopefully,suchcalculationsarenotjustlaborious butwouldberewardingandfunforthosewhoenjoytheprogramming. Thetitleofthebookmaysoundsomewhatoddortoostrong,sinceadmittedlyit actuallyachievesonlyaglimpseintothequantumintegrabilityinthreedimensions. Itismyhope,however,thatitstimulatesthesubject,nowinitsadolescence,tomake atransitionintothenextphase. TherearemanypeopletowhomIamindebtedforthedelightfulaswellaschal- lengingopportunitytowritethisbook.IamgratefultoMasatoOkadoforadviceon theplanofthebookandcollaborationonmanyrelatedprojects;VladimirMangazeev, Vincent Pasquier, Sergey Sergeev and Yasuhiko Yamada for sharing their insights v vi Preface andToshiyukiTanisakiforusefulcommunications.SpecialthanksgotoRodneyJ. Baxter,VladimirV.Bazhanov,EtsuroDate,MichioJimbo,TetsujiMiwaandthelate MikiWadatiforinspiringmeinthewondersofintegrablesystemsformanyyears. IhavehadkindsupportontexthandlingfromMasayukiNakamurafromSpringer Japan.Lastbutnotleast,Ithankmyfamilyforlettingmeworkcomfortablyfrom homethroughtheturbulentCOVID-19yearsofwriting. Thefirstmanuscriptofthisbook,whichwasalmostinthefinalform,wassentto thepublisheronOctober52021. Komaba,Tokyo,Japan AtsuoKuniba Contents 1 Introduction .................................................. 1 1.1 QuantumIntegrabilityinTwoDimensions .................. 1 1.2 Quantization:IntroducingtheThirdDimension .............. 3 1.3 QuantizedCoordinateRing ............................... 4 1.4 Compatibility: Tetrahedron, 3D Reflection and F 4 Equations .............................................. 5 1.5 Feedbackto2D ......................................... 6 1.6 LayoutoftheBook ...................................... 7 2 TetrahedronEquation ......................................... 9 2.1 3D R .................................................. 9 2.2 TetrahedronEquationofType RRRR = RRRR ............. 10 2.3 3D L .................................................. 13 2.4 TetrahedronEquationofType RLLL = LLLR ............. 13 2.5 QuantizedYang–BaxterEquation .......................... 15 2.6 TetrahedronEquationofType MMLL = LLMM ........... 16 2.7 BibliographicalNotesandComments ...................... 18 3 3D RFromQuantizedCoordinateRingofTypeA ............... 21 3.1 QuantizedCoordinateRing Aq(An−1) ...................... 21 3.2 RepresentationTheory ................................... 23 3.3 IntertwinerforCubicCoxeterRelation ..................... 26 3.4 ExplicitFormulafor3D R ................................ 30 3.5 SolutiontotheTetrahedronEquations ...................... 36 3.5.1 RRRR = RRRRType ........................... 36 3.5.2 RLLL = LLLRType ........................... 39 3.5.3 MMLL = LLMM Type ......................... 43 3.6 FurtherAspectsof3D R ................................. 45 3.6.1 BoundaryVector ................................ 45 3.6.2 CombinatorialandBirationalCounterparts .......... 47 vii viii Contents 3.6.3 BilinearizationandGeometricInterpretation ......... 50 3.7 BibliographicalNotesandComments ...................... 52 4 3DReflectionEquationandQuantizedReflectionEquation ....... 53 4.1 Introduction ............................................ 53 4.2 3D K .................................................. 54 4.3 3DReflectionEquation .................................. 55 4.4 QuantizedReflectionEquation ............................ 59 4.5 BibliographicalNotesandComments ...................... 63 5 3D K FromQuantizedCoordinateRingofTypeC ............... 65 5.1 QuantizedCoordinateRing A (C ) ........................ 65 q n 5.2 FundamentalRepresentations ............................. 67 5.3 InterwtinersforQuadraticandCubicCoxeterRelations ....... 69 5.4 IntertwinerforQuarticCoxeterRelation .................... 70 5.5 ExplicitFormulafor3D K ............................... 74 5.6 Solutiontothe3DReflectionEquation ..................... 79 5.7 SolutiontotheQuantizedReflectionEquation ............... 81 5.8 FurtherAspectsof3D K ................................. 84 5.8.1 BoundaryVector ................................ 84 5.8.2 CombinatorialandBirationalCounterparts .......... 86 5.9 BibliographicalNotesandComments ...................... 89 6 3D K FromQuantizedCoordinateRingofTypeB ............... 91 6.1 QuantizedCoordinateRing A (B ) ........................ 91 q n 6.2 FundamentalRepresentations ............................. 92 6.3 Intertwiners ............................................ 95 6.4 3DReflectionEquation .................................. 96 6.5 CombinatorialandBirationalCounterparts .................. 99 6.6 ProofofProposition6.5 .................................. 100 6.6.1 MatrixProductFormulaoftheStructureFunction .... 100 6.6.2 RTT Relation ................................... 102 6.6.3 ρTT Relations .................................. 103 6.7 BibliographicalNotesandComments ...................... 105 7 IntertwinersforQuantizedCoordinateRing A (F ) .............. 107 q 4 7.1 FundamentalRepresentations ............................. 107 7.2 Intertwiners ............................................ 108 7.3 F AnalogueoftheTetrahedron/3DReflectionEquations ..... 109 4 7.4 Reductionto3DReflectionEquations ...................... 112 7.5 BibliographicalNotesandComments ...................... 116 8 IntertwinerforQuantizedCoordinateRing A (G ) .............. 117 q 2 8.1 Introduction ............................................ 117 8.2 QuantizedCoordinateRing A (G ) ........................ 118 q 2 8.3 FundamentalRepresentations ............................. 118 8.4 Intertwiner ............................................. 120 Contents ix 8.5 QuantizedG ReflectionEquation ......................... 123 2 8.5.1 3D L ........................................... 123 8.5.2 QuantizedG ScatteringOperator J ................ 124 2 8.5.3 QuantizedG ReflectionEquation ................. 127 2 8.6 FurtherAspectsof F .................................... 131 8.6.1 BoundaryVector ................................ 131 8.6.2 CombinatorialandBirationalCounterparts .......... 131 8.7 DataonRelevantQuantum RMatrix ....................... 133 8.8 BibliographicalNotesandComments ...................... 136 9 Comments on Tetrahedron-Type Equation forNon-crystallographicCoxeterGroups ........................ 139 9.1 FiniteCoxeterGroups ................................... 139 9.2 Tetrahedron-TypeEquationfortheCoxeterGroup H ........ 141 3 9.3 DiscussionontheQuinticCoxeterRelation ................. 143 10 ConnectiontoPBWBasesofNilpotentSubalgebraofU .......... 147 q 10.1 QuantizedUniversalEnvelopingAlgebraU (g) ............. 147 q 10.1.1 Definition ...................................... 147 10.1.2 PBWBasis ..................................... 148 10.2 QuantizedCoordinateRing A (g) ......................... 149 q 10.2.1 Definition ...................................... 149 10.2.2 RightQuotientRing A (g) ....................... 153 q S 10.3 MainTheorem .......................................... 154 10.3.1 DefinitionsofγA and(cid:4)A ......................... 154 B B 10.3.2 ProofofTheorem10.6forRank2Cases ............ 155 10.4 ProofofProposition10.7 ................................. 157 10.4.1 ExplicitFormulasfor A .......................... 158 2 10.4.2 ExplicitFormulasforC .......................... 161 2 10.4.3 ExplicitFormulasforG ......................... 165 2 10.5 Tetrahedronand3DReflectionEquationsfromPBW Bases .................................................. 170 10.6 χ-Invariants ............................................ 172 10.7 BibliographicalNotesandComments ...................... 174 11 TraceReductionsof RLLL = LLLR ........................... 177 11.1 Introduction ............................................ 177 11.2 TraceReductionOvertheThirdComponentof L ............ 179 11.3 TraceReductionOvertheFirstComponentof L ............. 184 11.4 TraceReductionOvertheSecondComponentof L .......... 186 11.5 IdentificationwithQuantum RMatricesof A(1) ............. 188 n−1 11.5.1 Str3(z) .......................................... 189 11.5.2 Str1(z) .......................................... 191 11.5.3 Str2(z) .......................................... 193 11.6 CommutingLayerTransferMatricesandDuality ............ 194 11.7 BibliographicalNotesandComments ...................... 197

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.