CRM Short Courses Yuri I. Manin Quantum Groups and Noncommutative Geometry Second Edition With a Contribution by Theo Raedschelders and Michel Van den Bergh CRM Short Courses Series Editors Galia Dafni, Concordia University, Montreal, QC, Canada Véronique Hussin, University of Montreal, Montreal, QC, Canada Editorial Board Mireille Bousquet-Mélou (CNRS, LaBRI, Université de Bordeaux) Antonio Córdoba Barba (ICMAT, Universidad Autónoma de Madrid) Svetlana Jitomirskaya (UC Irvine) V. Kumar Murty (University of Toronto) Leonid Polterovich (Tel-Aviv University) ThevolumesintheCRMShortCoursesserieshaveaprimarilyinstructionalaim, focusing on presenting topics of current interest to readers ranging from graduate studentstoexperiencedresearchersinthemathematicalsciences.Eachtextisaimed atbringingthereadertotheforefrontofresearchinaparticularareaorfield,andcan consist of one or several courses with a unified theme. The inclusion of exercises, whilewelcome,isnotstrictlyrequired.Publicationsarelargelybutnotexclusively, basedonschools,instructionalworkshopsandlectureserieshostedby,oraffiliated with,theCentredeResearchesMathématiques(CRM).Specialemphasisisgivento thequality of exposition and pedagogical value ofeach text. More information about this series at http://www.springer.com/series/15360 Yuri I. Manin Quantum Groups and Noncommutative Geometry Second Edition With a Contribution by Theo Raedschelders and Michel Van den Bergh 123 YuriI. Manin MaxPlanckInstitute for Mathematics Bonn,Germany ISSN 2522-5200 ISSN 2522-5219 (electronic) CRM Short Courses ISBN978-3-319-97986-1 ISBN978-3-319-97987-8 (eBook) https://doi.org/10.1007/978-3-319-97987-8 LibraryofCongressControlNumber:2018950779 Mathematics Subject Classification (2010): 16S10, 16S37, 16S38, 16T05, 16T15, 16W30, 18D50, 18D10,20C30,20G42 1stedition:©CentredeRecherchesMathématiques1988 2ndedition:©SpringerNatureSwitzerlandAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface to the Second Edition ThissecondeditionwaspreparedwithgreathelpofTh.Raedschelders,M.Vanden Bergh, and D. Leites. Th. Raedschelders and M. Van den Bergh carefully read the whole text and suggested many editorial corrections. D. Leites, who started working on this book whenitsRussiantranslationwasbeingpreparedabouttwodecadesago,returnedto this project now and did a very meticulous job. I am deeply grateful to them. For some mathematical updates, see Chapter 1 “Introduction”. Bonn, Germany Yuri I. Manin v Contents Preface to the Second Edition ..... .... .... .... .... .... ..... .... v 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 The Quantum Group GLq(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Bialgebras and Hopf Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 Quadratic Algebras as Quantum Linear Spaces . . . . . . . . . . . . . . . 19 5 Quantum Matrix Spaces. I. Categorical Viewpoint. . . . . . . . . . . . . 25 6 Quantum Matrix Spaces. II. Coordinate Approach . . . . . . . . . . . . 29 7 Adding Missing Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8 From Semigroups to Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 9 Frobenius Algebras and the Quantum Determinant . . . . . . . . . . . . 47 10 Koszul Complexes and the Growth Rate of Quadratic Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11 Hopf *-Algebras and Compact Matrix Pseudogroups. . . . . . . . . . . 63 12 Yang–Baxter Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 13 Algebras in Tensor Categories and Yang–Baxter Functors. . . . . . . 73 14 Some Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 15 The Tannaka–Krein Formalism and (Re)Presentations of Universal Quantum Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Bibliography .. .... .... .... ..... .... .... .... .... .... ..... .... 117 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 123 vii Chapter 1 Introduction We begin with some terminology and background, in particular we define the no- tionsofHopfalgebrasandquantumgroups. LetH bethealgebraoffunctionsofaLiegroupG.Thenthemultiplicationmap G (cid:2)G ! G (resp. the inversion map G ! GW g ! g(cid:2)1, resp. the inclusion of theidentitypoint)givesrisetoa“comultiplication”(cid:2)W H ! H ˝H (resp.“an- tipode” iW H ! H, resp. “counit” "W H ! R), which satisfies a set of identities definingthegeneralalgebraicnotionofaHopfalgebra(cf.Chapter3below).This setissymmetricwithrespecttoreversingallarrows.However,anasymmetrymight arise: while H, as algebra, always has a commutative multiplication, it may well haveanoncocommutativecomultiplication(thisisthecaseifG isnonabelian). Hopfalgebrasthatarenotnecessarilycommutativeorcocommutativehavebeen studied by algebraists for several decades (cf. Abe [1]). Recently, however, some veryspecificHopfalgebrasemergedinmathematicalphysics;V.G.Drinfeldnamed them “quantum groups.” Initially, they appeared in the quantum inverse scattering transformmethod(QIST)developedbyL.D.Faddeevandhisschool(cf.[26,27,56, 58, 59]) and reviewed in V.G. Drinfeld’s Berkeley talk [21]. Closely related work (also motivated by QIST) was done by M. Jimbo [36, 37] and, from a somewhat different viewpoint, by S.L. Woronowicz [68, 69]. One of the main ideas behind these works is that such rigid objects as classical simple groups (or Lie algebras) admitinfactcontinuousdeformationsatthelevelofHopfalgebrascorresponding to them, and the deformed objects close to the initial one can be described very preciselytogetherwiththeirrepresentationtheory. Inthiswork,wesystematicallydevelopadifferentapproachtoquantumgroups, based upon the following observation. Suppose that you “quantize” the simplest phaseplane,imposingonitscoordinatesthecommutationrelation xy D e(cid:2)yx I ©SpringerNatureSwitzerlandAG2018 1 Y.I.Manin,QuantumGroupsandNoncommutativeGeometry, CRMShortCourses,https://doi.org/10.1007/978-3-319-97987-8_1 2 1 Introduction i.e., the integrated version of the Heisenberg commutation relation. Then the or- dinary symmetry group GL.2/ of the plane breaks down. However the “broken symmetry”iscompletelyrestoredifoneimposessomenontrivialcommutationre- lationsupontheentriesofthe.2 (cid:2) 2/-matrices,theelementsofGL.2/.Inthisway, one arrives at the notion of the quantum group GLq.2/, where q D e(cid:2), which is describedincompletedetailinChapter2. Oneremarkablepropertyofthisapproachisitsgenerality.Namely,inChapters4 and5,insteadof“quantumplane,”westartwitha“quantumlinearspace”defined byarbitraryquadraticrelationsbetweenitsnoncommutativecoordinates.Inthis wayweobtaina“generallinearquantumgroup,”orratherapair: “quantumsemigroupofendomorphisms” ! “quantumgroup.” The first object is a noncommutative space of the same kind (i.e., it is defined by quadraticrelations)whilethesecondoneisobtainedfromthefirstonebyaprocess ofnoncommutativelocalizationasadvocatedinalgebrabyP.M.Cohn,andarising hereforthefirsttimeinanaturalway.Thepointisthatoneinvertsmatricesandnot justelementsofaring,andtoobtainaHopfalgebra,onemust,generallyspeaking, invertinfinitelymanymatrices. We use the word “noncommutative space” in the spirit of Alain Connes. The maindifferenceisthatwedevelopafragmentofnoncommutativealgebraicgeom- etrywhileConnesdealswithnoncommutativedifferentialgeometryandtopology. InChapter11,wediscussawaytointroducea(cid:3)-structureinourgroupsthusmak- ingitpossibletodefinetheircompactforms. As in [56, 68, 69], but unlike [21], we work with the noncommutative ring of functions over a quantum group rather than with the “universal enveloping alge- bra,”whichisadualobject.Ofcourse,bothobjectsdeservecloseattention,butin our approach the former appears more naturally. The key technical notion in this connectionisthatofamultiplicativematrix:cf.Sections3.6–3.10.Itisalsoworth mentioning that we have no need to consider only small deformations of classi- calobjects:theparameterspacesofourobjectsaredefinedglobally.Theyarejust Grassmanniansofquadraticrelations:cf.Section4.2.Thepricepaidforthisisthe lossofthenotionofa“semisimple”quantumgroup(whichanywayhasneverbeen formalizedinpreviousworks). Moreover,wedonotneedtoimposeanyrelationontheYang–Baxterequations from the start. However, we can and must explain such a relation at a later stage. AnimportantthingtorememberisthataYang–Baxteroperatorgeneratesquantum groups by two very different procedures. One is to consider the quantum auto- morphism group of a quadratic algebra which is just a “Yang–Baxter symmetric algebra.”ThegroupsappearinginQISTareofthistype. 1 Introduction 3 Anotherwaystartswitharelativizationofthenotionsofquadraticalgebra,quan- tum group, etc. by replacing everywhere the transposition of factors in a tensor product by a Yang–Baxter operator. The simplest example is the “super version” of our construction, which is fairly obvious. Other examples were not considered before[46].WeexplaintheseideasrathersuccinctlyinChapters12and13. An earlier version of this work is [46]. Many details and some new results are addedhere.IwouldliketomentioninparticularthegeneralconstructionofaHopf algebrastartingfromabialgebrawithageneratingmultiplicativematrix(seeChap- ter8).Thesenotesarenotmeanttobeasurveyofthisquicklygrowingsubject;the bibliography is very incomplete.1 The ideas of this paper were first developed in mylecturesinMoscowUniversityduringthewinterof1986–1987andthesubse- quentseminarwhereYu.KobyzevsuggestedthedescriptionofGLq.2/whichwas seminalforallthatfollows. These notes were written for a series of lectures given at the Centre de recher- chesmathématiquesattheUniversitédeMontréalinJune1988,whileIwasinvited asAisenstadtProfessor.IamgratefultomanypeoplewhomademystayinMont- réalveryagreeableandproductive,inparticulartoAndréAisenstadt,whomitwas my pleasure to meet. I would like to thank Luis Alvárez-Gaumé and John Harnad for their assistance in the preparation of these notes. Finally I would like to thank NathalieBrunet,LouiseLetendre,andAngèlePatenaudefortheircarefultypingof themanuscript. 1Severaltextbooksandreviewsonquantumgroupswerepublished:[14,19,39,40,45].Theycontaina morecompletebibliographyandanswersomeofthequestionsposedinChapter14ofthisbook. Chapter 2 .2/ The Quantum Group GL q 2.1 NoncommutativeSpaces:PointsandRingsofFunctions In this paper, we fix once and for all a field K. A ring (or an algebra) means an associative K-algebra with unit, not necessarily commutative. It is suggestive to imagine the ring A as a ring of (polynomial) functions on a space which is an object of noncommutative, or “quantum,” geometry. Morphisms of spaces corre- spondtoringhomomorphismsintheoppositedirection.ForAandB fixed,theset HomK(cid:2)alg.A;B/isalsocalledthesetofB-pointsofthespacedefinedbyA. There is no harm in giving a formal definition of the category of noncommuta- tivespacesas.K(cid:2)Alg/opaslongasoneremembersthatsomeofthemostcommon categoricalprejudicescouldbemisleadingwhenworkingwith.K(cid:2)Alg/op.Toquote justone,thetensorproductinK(cid:2)Algdoesnotdefineadirectproductin.K(cid:2)Alg/op, butmorallydoescorrespondtoa“directproduct”ofquantumspaces. 2.2 TwoQuantumPlanesandQuantumMatrices Fixq 2 K,whereq ¤ 0.ThequantumplaneA2qj0 isdefinedbythering A2j0 WD Khx;yi=.xy (cid:2)q(cid:2)1yx/ ; (2.1) q where Khx1;:::;xni is the associative K-algebra freely generated by x1;:::;xn. This plane A2qj0 is a deformation of the usual plane corresponding to q D 1. We alsoneedadeformationofthe0j2-dimensional“plane”ofsupergeometry: A0j2 WD Kh(cid:2);(cid:3)i=.(cid:2)2;(cid:3)2;(cid:2)(cid:3)Cq(cid:3)(cid:2)/ : (2.2) q ©SpringerNatureSwitzerlandAG2018 5 Y.I.Manin,QuantumGroupsandNoncommutativeGeometry, CRMShortCourses,https://doi.org/10.1007/978-3-319-97987-8_2