ebook img

Quantum Field Theory.. A Diagrammatic Approach [2019 draft] PDF

529 Pages·2019·3.942 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Field Theory.. A Diagrammatic Approach [2019 draft]

1 Quantum Field Theory A Diagrammatic Approach Ronald Kleiss 2 Simon Partlic (T`´re´`s´t,1590- ?, 1649) astronomer, mathematician and physician ”...The Ancients were wont to draw Diagrams & thus divine Predictions for future Happenings, by Arts magickal or conjectural... likewise the Sa- vants of the Future will learn to employ Diagrams ; yet not by Arts magickal, rather by Arts arith- metickal, algebraickal & by Geometrie and the Quadrature will they study to foretell the Events of Nature...” (attributed to Simon Partli´c) Contents 0 Introductory remarks 19 0.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 0.2 Basic tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 0.2.1 Units and fundamental units . . . . . . . . . . . . . . . 20 0.2.2 Planck units . . . . . . . . . . . . . . . . . . . . . . . 21 0.2.3 Charges . . . . . . . . . . . . . . . . . . . . . . . . . . 22 0.2.4 Conventions . . . . . . . . . . . . . . . . . . . . . . . . 23 0.3 The P4 Hall of Fame . . . . . . . . . . . . . . . . . . . . . . . 26 0.4 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 QFT in zero dimensions 29 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.2 Probabilistic considerations . . . . . . . . . . . . . . . . . . . 30 1.2.1 Quantum field and action . . . . . . . . . . . . . . . . 30 1.2.2 Green’s functions, sources and the path integral . . . . 30 1.2.3 Connected Green’s functions . . . . . . . . . . . . . . . 31 1.2.4 The free theory . . . . . . . . . . . . . . . . . . . . . . 32 1.2.5 The ϕ4 model and perturbation theory . . . . . . . . . 33 1.2.6 The Schwinger-Dyson equation . . . . . . . . . . . . . 35 1.2.7 The Schwinger-Dyson equation for the field function . . 36 1.3 Diagrammatics . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.3.1 Feynman diagrams . . . . . . . . . . . . . . . . . . . . 37 1.3.2 Feynman rules . . . . . . . . . . . . . . . . . . . . . . . 38 1.3.3 Symmetries and multiplicities . . . . . . . . . . . . . . 39 1.3.4 Vacuum bubbles . . . . . . . . . . . . . . . . . . . . . 42 1.3.5 An equation for connected graphs . . . . . . . . . . . . 42 1.3.6 Semi-connected graphs and the SDe . . . . . . . . . . . 44 1.3.7 The path integral as a set of diagrams . . . . . . . . . 45 3 4 CONTENTS 1.3.8 Dyson summation . . . . . . . . . . . . . . . . . . . . . 46 1.4 Planck’s constant . . . . . . . . . . . . . . . . . . . . . . . . . 48 1.4.1 The loop expansion, and reverse engineering . . . . . . 48 1.4.2 The classical limit . . . . . . . . . . . . . . . . . . . . . 50 1.4.3 On second quantisation . . . . . . . . . . . . . . . . . . 52 1.4.4 Instanton contributions . . . . . . . . . . . . . . . . . . 52 1.5 The effective action . . . . . . . . . . . . . . . . . . . . . . . . 53 1.5.1 The effective action as a Legendre transform . . . . . . 53 1.5.2 Diagrams for the effective action . . . . . . . . . . . . . 55 1.5.3 Computing the effective action . . . . . . . . . . . . . . 56 1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2 On renormalization 65 2.1 Doing physics : mentality against reality . . . . . . . . . . . . 65 2.1.1 Physics vs. Mathematics . . . . . . . . . . . . . . . . . 65 2.1.2 The renormalisation program : an example . . . . . . . 66 2.2 A handle on loop divergences . . . . . . . . . . . . . . . . . . 68 2.2.1 A toy : the dot model . . . . . . . . . . . . . . . . . . 68 2.2.2 Nonrenormalizable theories. . . . . . . . . . . . . . . . 71 2.3 Scale dependence . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.3.1 Scale-inpendent scale dependence . . . . . . . . . . . . 72 2.3.2 Low-order approximation to the renormalised coupling 75 2.3.3 Scheme dependence . . . . . . . . . . . . . . . . . . . . 77 2.3.4 Theories with more parameters . . . . . . . . . . . . . 78 2.3.5 Failure of the dot model . . . . . . . . . . . . . . . . . 79 2.4 Asymptotics of renormalisation in ϕ4 theory . . . . . . . . . . 79 2.5 The method of counterterms . . . . . . . . . . . . . . . . . . . 81 2.5.1 Counterterms in the action . . . . . . . . . . . . . . . . 81 2.5.2 Return to the dot model, and a preview . . . . . . . . 82 2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3 More fields in zero dimensions 85 3.1 The action and the path integral . . . . . . . . . . . . . . . . 85 3.2 Connected Green’s functions and field functions . . . . . . . . 86 3.3 The Schwinger-Dyson equation . . . . . . . . . . . . . . . . . 87 3.4 The sum rules revisited . . . . . . . . . . . . . . . . . . . . . . 88 3.5 A zero-dimensional toy for QED . . . . . . . . . . . . . . . . 89 3.5.1 Fields and sources . . . . . . . . . . . . . . . . . . . . 89 CONTENTS 5 3.5.2 Bald, furry and quenched toys . . . . . . . . . . . . . . 91 3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4 QFT in Euclidean spaces 95 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2 One-dimensional discrete theory . . . . . . . . . . . . . . . . . 95 4.2.1 An infinite number of fields . . . . . . . . . . . . . . . 95 4.2.2 Introducing the propagator . . . . . . . . . . . . . . . . 97 4.2.3 Computing the propagator . . . . . . . . . . . . . . . . 98 4.2.4 Figments of the imagination : a sermon . . . . . . . . . 100 4.3 One-dimensional continuum theory . . . . . . . . . . . . . . . 102 4.3.1 The continuum limit for the propagator . . . . . . . . . 102 4.3.2 The continuum limit for the action . . . . . . . . . . . 103 4.3.3 The continuum limit of the classical equation . . . . . 105 4.3.4 The continuum Feynman rules and SDe . . . . . . . . . 105 4.3.5 Field configurations in one dimension . . . . . . . . . . 106 4.4 The momentum representation . . . . . . . . . . . . . . . . . . 109 4.4.1 Fourier transforming the SDe . . . . . . . . . . . . . . 109 4.5 Doing it in momentum space . . . . . . . . . . . . . . . . . . . 110 4.5.1 The Feynman rules . . . . . . . . . . . . . . . . . . . . 110 4.5.2 Some example diagrams . . . . . . . . . . . . . . . . . 111 4.6 More-dimensional theories . . . . . . . . . . . . . . . . . . . . 113 4.6.1 The more-dimensional continuum . . . . . . . . . . . . 113 4.6.2 The propagator, explicitly . . . . . . . . . . . . . . . . 116 4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5 QFT in Minkowski space 121 5.1 Moving to Minkowski space : making time . . . . . . . . . . . 121 5.1.1 Distance in Minkowski space . . . . . . . . . . . . . . . 121 5.1.2 Farewell probability, hello SDe . . . . . . . . . . . . . . 122 5.1.3 A close look at almost nothing: i(cid:15) and − . . . . . . . . 124 5.1.4 The need for quantum transition amplitudes . . . . . . 125 5.1.5 Feynman rules for Minkowskian theories . . . . . . . . 126 5.1.6 The propagator, explicitly . . . . . . . . . . . . . . . . 126 5.2 Moving in Minkowski space : particles . . . . . . . . . . . . . 131 5.2.1 The Klein-Gordon equation . . . . . . . . . . . . . . . 131 5.2.2 Enter the particle ! . . . . . . . . . . . . . . . . . . . . 132 5.2.3 Unstable particles, i(cid:15) and the flow of time . . . . . . . 133 6 CONTENTS 5.2.4 The Yukawa potential . . . . . . . . . . . . . . . . . . 135 5.2.5 Kinematics and Newton’s First Law . . . . . . . . . . . 136 5.2.6 Antimatter . . . . . . . . . . . . . . . . . . . . . . . . 139 5.2.7 Counting states : the phase-space integration element . 143 5.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 6 Scattering processes 147 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.2 Incursion into the scattering process . . . . . . . . . . . . . . . 147 6.2.1 Diagrammatic picture of scattering . . . . . . . . . . . 147 6.2.2 The argument for connectedness . . . . . . . . . . . . . 149 6.3 Building predictions . . . . . . . . . . . . . . . . . . . . . . . 151 6.3.1 General formulæ for decay widhts and cross sections . . 151 6.3.2 The truncation bootstrap . . . . . . . . . . . . . . . . 152 6.3.3 A check on dimensionalities . . . . . . . . . . . . . . . 157 6.3.4 Crossing symmetry . . . . . . . . . . . . . . . . . . . . 158 6.4 Unitarity issues . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.4.1 Unitarity of the S matrix . . . . . . . . . . . . . . . . 159 6.4.2 The cutting rules . . . . . . . . . . . . . . . . . . . . . 163 6.4.3 Infrared cancellations in QED . . . . . . . . . . . . . . 165 6.5 Some example calculations . . . . . . . . . . . . . . . . . . . . 167 6.5.1 The FEE model . . . . . . . . . . . . . . . . . . . . . . 167 6.5.2 Two-body phase space . . . . . . . . . . . . . . . . . . 168 6.5.3 A decay process . . . . . . . . . . . . . . . . . . . . . . 169 6.5.4 A scattering process . . . . . . . . . . . . . . . . . . . 170 6.6 The one-loop cookbook . . . . . . . . . . . . . . . . . . . . . . 172 6.6.1 The one-loop calculation . . . . . . . . . . . . . . . . . 172 6.6.2 Dispersion relations . . . . . . . . . . . . . . . . . . . . 179 6.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7 Dirac particles 185 7.1 Pimp my propagator . . . . . . . . . . . . . . . . . . . . . . . 185 7.1.1 Down with dyads ! . . . . . . . . . . . . . . . . . . . . 186 7.1.2 The spin interpretation . . . . . . . . . . . . . . . . . . 187 7.2 The Dirac algebra . . . . . . . . . . . . . . . . . . . . . . . . . 188 7.2.1 The Dirac matrices . . . . . . . . . . . . . . . . . . . 188 7.2.2 The Clifford algebra . . . . . . . . . . . . . . . . . . . 191 7.2.3 Trace identities . . . . . . . . . . . . . . . . . . . . . . 192 CONTENTS 7 7.2.4 Pauli and Chisholm, their identities . . . . . . . . . . . 194 7.2.5 Hermite no, Dirac yes . . . . . . . . . . . . . . . . . . 195 7.2.6 Flipping in and flipping out . . . . . . . . . . . . . . . 197 7.2.7 A Fierz identity . . . . . . . . . . . . . . . . . . . . . . 198 7.3 Dirac spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 7.3.1 Chirality spinors . . . . . . . . . . . . . . . . . . . . . 199 7.3.2 Chirality spinors are massless . . . . . . . . . . . . . . 200 7.3.3 Phase conventions, spinor products and Weyl . . . . . 201 7.3.4 General spinors and their dyads . . . . . . . . . . . . . 202 7.3.5 General spinors and Dirac spinors . . . . . . . . . . . . 204 7.3.6 Particular general spinors . . . . . . . . . . . . . . . . 205 7.4 Dirac particles . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 7.4.1 Casimir does tricks . . . . . . . . . . . . . . . . . . . . 207 7.4.2 The Dirac propagator, and a convention . . . . . . . . 209 7.4.3 Truncating Dirac particles : external Dirac lines . . . . 211 7.4.4 Lorentz transformations in Dirac space . . . . . . . . . 213 7.4.5 The spin of Dirac particles . . . . . . . . . . . . . . . . 214 7.4.6 Massless Dirac particles ; helicity states . . . . . . . . 215 7.4.7 The parity transform . . . . . . . . . . . . . . . . . . . 217 7.5 The Feynman rules for Dirac particles . . . . . . . . . . . . . . 218 7.5.1 Dirac loops... . . . . . . . . . . . . . . . . . . . . . . . 218 7.5.2 ... and Dirac loops only . . . . . . . . . . . . . . . . . 219 7.5.3 Interchange signs . . . . . . . . . . . . . . . . . . . . . 220 7.5.4 The Pauli principle . . . . . . . . . . . . . . . . . . . . 222 7.6 The Dirac equation . . . . . . . . . . . . . . . . . . . . . . . . 223 7.6.1 The classical limit . . . . . . . . . . . . . . . . . . . . . 223 7.6.2 The free Dirac action . . . . . . . . . . . . . . . . . . . 224 7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 8 Helicity techniques for Dirac particles 229 8.1 The standard form for spinors . . . . . . . . . . . . . . . . . . 229 8.1.1 Opting for helicities, opting for antisymmetry . . . . . 229 8.1.2 The standard form for helicity spinors . . . . . . . . . 230 8.1.3 Some useful identities . . . . . . . . . . . . . . . . . . . 231 8.1.4 How to compute spinor products . . . . . . . . . . . . 232 8.1.5 The standard form for massive particles . . . . . . . . 233 8.1.6 The standard form for complex momenta . . . . . . . . 234 8.2 Summary of tools for spinor techniques . . . . . . . . . . . . 235 8 CONTENTS 8.3 Fermionic decays : the Fermi model . . . . . . . . . . . . . . . 236 8.3.1 The amplitude for muon decay . . . . . . . . . . . . . 236 8.3.2 Three-body phase space . . . . . . . . . . . . . . . . . 238 8.3.3 The muon decay width . . . . . . . . . . . . . . . . . . 239 8.3.4 Observable distributions in muon decay . . . . . . . . . 240 8.3.5 Charged pion decay: helicity suppression . . . . . . . . 242 8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 9 Vector particles 247 9.1 Massive vector particles . . . . . . . . . . . . . . . . . . . . . 247 9.1.1 The propagator . . . . . . . . . . . . . . . . . . . . . . 247 9.1.2 The Feynman rules for external vector particles . . . . 248 9.1.3 The spin of vector particles . . . . . . . . . . . . . . . 249 9.1.4 Polarisation vectors for helicity states . . . . . . . . . . 251 9.1.5 The Proca equation . . . . . . . . . . . . . . . . . . . . 252 9.2 The spin-statistics theorem . . . . . . . . . . . . . . . . . . . . 253 9.2.1 Spinorial form of vector polarisations . . . . . . . . . . 253 9.2.2 Proof of the spin-statistics theorem . . . . . . . . . . . 255 9.3 Massless vector particles . . . . . . . . . . . . . . . . . . . . . 256 9.3.1 Polarisations of massless vector particles . . . . . . . . 256 9.3.2 Current conservation from the polarisation . . . . . . . 257 9.3.3 Handlebar condition for massive vector particles . . . . 259 9.3.4 Helicity states for massless vectors . . . . . . . . . . . 259 9.3.5 The massless propagator : the axial gauge . . . . . . . 261 9.3.6 Gauge vector shift . . . . . . . . . . . . . . . . . . . . 262 9.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 10 Quantum Electrodynamics 267 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 10.2 Constructing QED . . . . . . . . . . . . . . . . . . . . . . . . 267 10.2.1 The QED vertex . . . . . . . . . . . . . . . . . . . . . 267 10.2.2 Handlebars : a first look . . . . . . . . . . . . . . . . . 268 10.2.3 Handlebar diagrammatics . . . . . . . . . . . . . . . . 270 10.2.4 The Ward-Takahashi identity . . . . . . . . . . . . . . 272 10.2.5 The charged Dirac equation . . . . . . . . . . . . . . . 275 10.2.6 The Gordon decomposition . . . . . . . . . . . . . . . 276 10.2.7 Furry’s theorem . . . . . . . . . . . . . . . . . . . . . . 277 10.3 Some QED processes . . . . . . . . . . . . . . . . . . . . . . . 279 CONTENTS 9 10.3.1 A classic calculation : muon pair production . . . . . . 279 10.3.2 Compton and Thomson scattering . . . . . . . . . . . 283 10.3.3 Electron-positron annihilation . . . . . . . . . . . . . . 286 10.3.4 Bhabha scattering . . . . . . . . . . . . . . . . . . . . 288 10.3.5 Bremsstrahlung in Mœller scattering . . . . . . . . . . 290 10.4 Scalar electrodynamics . . . . . . . . . . . . . . . . . . . . . . 298 10.4.1 The vertices . . . . . . . . . . . . . . . . . . . . . . . . 298 10.4.2 Proof of current conservation in sQED . . . . . . . . . 300 10.5 The Coulomb potential . . . . . . . . . . . . . . . . . . . . . . 302 10.6 Electrons in external fields : g = 2 . . . . . . . . . . . . . . . . 304 10.6.1 The charged Klein-Gordon equation . . . . . . . . . . . 304 10.6.2 The relativistic Pauli equation . . . . . . . . . . . . . . 305 10.6.3 A constant magnetic field . . . . . . . . . . . . . . . . 306 10.7 Selected topics in QED . . . . . . . . . . . . . . . . . . . . . . 307 10.7.1 Three-photon production . . . . . . . . . . . . . . . . . 307 10.7.2 The Thomson limit : scalar vs spinor . . . . . . . . . . 310 10.7.3 The Landau-Yang theorem . . . . . . . . . . . . . . . 314 10.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 11 Loop effects in QED 321 11.1 One-loop effects in QED . . . . . . . . . . . . . . . . . . . . . 321 11.2 The photon self-energy . . . . . . . . . . . . . . . . . . . . . . 321 11.2.1 Current conservation . . . . . . . . . . . . . . . . . . . 321 11.2.2 Using the optical theorem . . . . . . . . . . . . . . . . 322 11.2.3 Getting the divergence . . . . . . . . . . . . . . . . . . 323 11.2.4 The vacuum polarization . . . . . . . . . . . . . . . . . 324 11.2.5 Hadronic vacuum polarization . . . . . . . . . . . . . . 325 11.3 The fermion self-energy . . . . . . . . . . . . . . . . . . . . . . 327 11.3.1 A look at gauge invariance . . . . . . . . . . . . . . . . 327 11.3.2 Summing the self-energies . . . . . . . . . . . . . . . . 328 11.3.3 The loop calculation . . . . . . . . . . . . . . . . . . . 329 11.3.4 The curious incident of the divergences in the nighttime331 11.4 Infrared singularities in Bremsstrahlung . . . . . . . . . . . . . 332 11.5 The vertex correction . . . . . . . . . . . . . . . . . . . . . . . 335 11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 10 CONTENTS 12 Quantum Chromodynamics 341 12.1 Introduction: coloured quarks and gluons . . . . . . . . . . . . 341 12.2 Quarks and gluons : first Feynman rules . . . . . . . . . . . . 342 12.2.1 The propagators . . . . . . . . . . . . . . . . . . . . . 342 12.2.2 The quark-gluon vertex . . . . . . . . . . . . . . . . . . 343 12.2.3 A closer look at the T matrices . . . . . . . . . . . . . 343 12.2.4 The Fierz identity for T matrices . . . . . . . . . . . . 346 12.3 The three-gluon interaction . . . . . . . . . . . . . . . . . . . 348 12.3.1 The need for three-gluon vertices . . . . . . . . . . . . 348 12.3.2 Furry’s failure . . . . . . . . . . . . . . . . . . . . . . . 350 12.3.3 The ggg vertex and its handlebar . . . . . . . . . . . . 351 12.3.4 On coupling quantisation . . . . . . . . . . . . . . . . . 355 12.4 The four-gluon interaction . . . . . . . . . . . . . . . . . . . . 355 12.4.1 Colourful manipulations . . . . . . . . . . . . . . . . . 355 12.4.2 A purely gluonic process . . . . . . . . . . . . . . . . . 356 12.5 Current conservation in QCD . . . . . . . . . . . . . . . . . . 358 12.5.1 More vertices ? . . . . . . . . . . . . . . . . . . . . . . 358 12.5.2 The Antkaz . . . . . . . . . . . . . . . . . . . . . . . . 359 12.5.3 Proof of current conservation . . . . . . . . . . . . . . 360 12.6 Selected topics in QCD . . . . . . . . . . . . . . . . . . . . . . 361 12.6.1 White and coloured states . . . . . . . . . . . . . . . . 361 12.6.2 The QCD Coulomb interaction . . . . . . . . . . . . . 362 12.6.3 The process qq¯→ gg . . . . . . . . . . . . . . . . . . . 363 12.6.4 The Landau-Yang theorem revisited . . . . . . . . . . . 366 12.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 13 Electroweak theory 373 13.1 Muon decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 13.1.1 The Fermi coupling constant . . . . . . . . . . . . . . . 373 13.1.2 Failure of the Fermi model in µ− ν → e− ν . . . . . 374 µ e 13.2 The W particle . . . . . . . . . . . . . . . . . . . . . . . . . . 375 13.2.1 The IVB strategy . . . . . . . . . . . . . . . . . . . . . 375 13.2.2 The cross section for µ−ν → e−ν revisited . . . . . . 378 µ e 13.2.3 The WWγ vertex . . . . . . . . . . . . . . . . . . . . . 379 13.3 The Z particle . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 13.3.1 W pair production . . . . . . . . . . . . . . . . . . . . 384 13.3.2 The weak mixing angle for couplings . . . . . . . . . . 388 13.3.3 W,Z and γ four-point interactions . . . . . . . . . . . 389

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.