ebook img

Quantum field theory PDF

815 Pages·3.58 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum field theory

Part I Feynman Diagrams and Quantum Electrodynamics Chapter (cid:0) Invitation(cid:0) Pair Production in e(cid:0)e(cid:0) Annihilation The main purpose of Part I of this book is to develop the basic calculational methodofquantum(cid:0)eldtheory(cid:1)theformalismofFeynmandiagrams(cid:2)Wewill thenapplythisformalismtocomputationsinQuantumElectrodynamics(cid:1)the quantum theory of electrons and photons(cid:2) QuantumElectrodynamics(cid:3)QED(cid:4)isperhapsthebestfundamentalphys(cid:5) ical theory we have(cid:2) The theory is formulated as a set of simple equations (cid:3)Maxwell(cid:6)sequationsandtheDiracequation(cid:4)whoseformisessentiallydeter(cid:5) mined by relativistic invariance(cid:2) The quantum(cid:5)mechanical solutions of these equationsgivedetailedpredictionsofelectromagneticphenomenafrommacro(cid:5) scopic distances down to regionsseveral hundred times smaller than the pro(cid:5) ton(cid:2) Feynmandiagramsprovideforthiseleganttheoryanequallyelegantpro(cid:5) cedurefor calculation(cid:7)Imagine aprocessthat can be carriedout by electrons and photons(cid:1) draw a diagram(cid:1) and then use the diagram to write the mathe(cid:5) matical formofthe quantum(cid:5)mechanicalamplitude forthatprocesstooccur(cid:2) In this (cid:0)rst part of the book we will develop both the theory of QED and the method of Feynman diagrams from the basic principles of quantum mechanics and relativity(cid:2) Eventually(cid:1) we will arrive at a point where we can calculate observable quantities that are of great interest in the study of ele(cid:5) mentary particles(cid:2) But to reach our goal of deriving this simple calculational method(cid:1) we must (cid:0)rst(cid:1) unfortunately(cid:1) make a serious detour into formalism(cid:2) The three chapters that follow this one are almost completely formal(cid:1) and the readermight wonder(cid:1) in the courseofthis development(cid:1) where wearego(cid:5) ing(cid:2) We would liketo partiallyanswerthat question in advance by discussing the physicsof an especiallysimple QED process(cid:8)onesu(cid:9)cientlysimple that many of its features follow directly from physical intuition(cid:2) Of course(cid:1) this intuitive(cid:1) bottom(cid:5)up approach will contain many gaps(cid:2) In Chapter (cid:10) we will returntothis processwiththefull poweroftheFeynmandiagramformalism(cid:2) Working from the top down(cid:1) we will then see all of these di(cid:9)culties swept away(cid:2) (cid:0) (cid:0) (cid:1) Chapter(cid:0) Invitation(cid:1) Pair Production in e e(cid:0) Annihilation (cid:0) (cid:0) Figure (cid:2)(cid:3)(cid:2)(cid:3) Theannihilationreactione e(cid:0) (cid:0) (cid:0)(cid:0)(cid:2)showninthecenter(cid:3) (cid:0) of(cid:3)mass frame(cid:4) The Simplest Situation Since most particle physics experiments involve scattering(cid:1) the most com(cid:5) monly calculated quantities in quantum (cid:0)eld theory are scattering cross sec(cid:5) tions(cid:2) We will now calculate the cross section for the simplest of all QED processes(cid:7) the annihilation of an electron with its antiparticle(cid:1) a positron(cid:1) to form a pairof heavierleptons (cid:3)such asmuons(cid:4)(cid:2) The existence of antiparticles isactuallyapredictionofquantum(cid:0)eldtheory(cid:1)aswewilldiscussinChapters (cid:11) and (cid:12)(cid:2) For the moment(cid:1) though(cid:1) we take their existence as given(cid:2) Anexperimenttomeasurethisannihilationprobabilitywouldproceedby (cid:0)ring abeam of electronsat abeam of positrons(cid:2)The measurablequantityis (cid:0) (cid:0) thecrosssectionforthereactione e(cid:0) (cid:0) (cid:0)(cid:0) asafunctionofthecenter(cid:5)of(cid:5) (cid:0) mass energy and the relative angle (cid:1) between the incoming electrons and the outgoingmuons(cid:2)TheprocessisillustratedinFig(cid:2)(cid:13)(cid:2)(cid:13)(cid:2)Forsimplicity(cid:1)wework in the center(cid:5)of(cid:5)mass (cid:3)CM(cid:4) frame where the momenta satisfy p(cid:1) (cid:14) p and (cid:1) k(cid:1) (cid:14) k(cid:2)WealsoassumethatthebeamenergyE ismuchgreaterthaneither (cid:1) the electron or the muon mass(cid:1) so that p (cid:14) p(cid:1) (cid:14) k (cid:14) k(cid:1) (cid:14)E Ecm(cid:2)(cid:11)(cid:2) j j j j j j j j (cid:2) (cid:3)We use boldface type to denote (cid:12)(cid:5)vectors and ordinary italic type to denote (cid:15)(cid:5)vectors(cid:2)(cid:4) Sinceboththeelectronandthemuonhavespin(cid:13)(cid:2)(cid:11)(cid:1)wemustspecifytheir spinorientations(cid:2)Itisusefultotaketheaxisthatde(cid:0)nesthespinquantization of each particle to be in the direction of its motion(cid:16) each particle can then haveitsspinpolarizedparallelorantiparalleltothisaxis(cid:2)Inpractice(cid:1)electron and positron beams are often unpolarized(cid:1) and muon detectors are normally blind to the muon polarization(cid:2) Hence we should average the cross section over electron and positron spin orientations(cid:1) and sum the cross section over muon spin orientations(cid:2) For any given set of spin orientations(cid:1) it is conventional to write the di(cid:17)erential cross section for our process(cid:1) with the (cid:0)(cid:0) produced into a solid angle d(cid:18)(cid:1) as d(cid:3) (cid:13) (cid:1) (cid:14) (cid:5) (cid:3)(cid:13)(cid:5)(cid:13)(cid:4) (cid:1) (cid:1) d(cid:18) (cid:19)(cid:15)(cid:4) Ecm (cid:3) M (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) Chapter (cid:0) Invitation(cid:1) Pair Productionin e e(cid:0) Annihilation (cid:4) (cid:1) The factor Ec(cid:0)m provides the correct dimensions for a cross section(cid:1) since in (cid:1) (cid:1) ourunits(cid:3)energy(cid:4)(cid:0) (cid:3)length(cid:4) (cid:2) Thequantity is thereforedimensionless(cid:16) (cid:4) M it is the quantum(cid:5)mechanical amplitude for the process to occur (cid:3)analogous to the scattering amplitude f in nonrelativistic quantum mechanics(cid:4)(cid:1) and we must now address the question of how to compute it from fundamental theory(cid:2)The other factorsin theexpressionarepurelya matter ofconvention(cid:2) Equation (cid:3)(cid:13)(cid:2)(cid:13)(cid:4) is actually a special case(cid:1) valid for CM scattering when the (cid:0)nal state contains two massless particles(cid:1) of a more general formula (cid:3)whose form cannot be deduced from dimensional analysis(cid:4) which we will derive in Section (cid:15)(cid:2)(cid:10)(cid:2) Now comes some bad news and some good news(cid:2) The bad news is that even for this simplest of QED processes(cid:1) the exact expression for is not known(cid:2) Actually this fact should come as no sur(cid:5) M prise(cid:1) since even in nonrelativistic quantum mechanics(cid:1) scattering problems can rarely be solved exactly(cid:2) The best we can do is obtain a formal expres(cid:5) sion for as a perturbation series in the strength of the electromagnetic M interaction(cid:1) and evaluate the (cid:0)rst few terms in this series(cid:2) The good news is that Feynman has invented a beautiful way to orga(cid:5) nize and visualize the perturbation series(cid:7) the method of Feynman diagrams(cid:2) Roughlyspeaking(cid:1)thediagramsdisplaythe(cid:20)owofelectronsandphotonsdur(cid:5) ingthescatteringprocess(cid:2)Forourparticularcalculation(cid:1)thelowest(cid:5)orderterm in the perturbation series can be represented by a single diagram(cid:1) shown in Fig(cid:2)(cid:13)(cid:2)(cid:11)(cid:2)Thediagramismadeup ofthree typesofcomponents(cid:7)externallines (cid:3)representingthe fourincoming and outgoingparticles(cid:4)(cid:1) internallines (cid:3)repre(cid:5) senting(cid:21)virtual(cid:22)particles(cid:1)in thiscaseonevirtualphoton(cid:4)(cid:1) andvertices(cid:2)It is conventionaltousestraightlinesforfermionsandwavylinesforphotons(cid:2)The arrows on the straight lines denote the direction of negative charge (cid:20)ow(cid:1) not momentum(cid:2) We assigna(cid:15)(cid:5)momentum vectorto eachexternalline(cid:1) as shown(cid:2) In this diagram(cid:1) the momentum q of the one internal line is determined by momentum conservation at either of the vertices(cid:7) q (cid:14) p(cid:23)p(cid:1) (cid:14) k (cid:23)k(cid:1)(cid:2) We must also associate a spin state (cid:3)either (cid:21)up(cid:22) or (cid:21)down(cid:22)(cid:4) with each external fermion(cid:2) Accordingtothe Feynman rules(cid:1) eachdiagramcanbe translateddirectly intoa contributionto (cid:2)Therulesassigna shortalgebraicfactorto eachel(cid:5) M ement of a diagram(cid:1) and the product of these factors gives the value of the corresponding term in the perturbation series(cid:2) Getting the resulting expres(cid:5) sion for into a form that is usable(cid:1) however(cid:1) can still be nontrivial(cid:2) We M willdevelopmuchusefultechnologyfordoingsuchcalculationsin subsequent chapters(cid:2) But we do not have that technologyyet(cid:1) so to get an answerto our particularproblemwewillusesomeheuristicargumentsinsteadofthe actual Feynman rules(cid:2) Recall that in quantum(cid:5)mechanicalperturbation theory(cid:1)a transitionam(cid:5) plitude can be computed(cid:1) to (cid:0)rst order(cid:1) as an expression of the form (cid:0)nal state HI initial state (cid:6) (cid:3)(cid:13)(cid:5)(cid:11)(cid:4) h j j i (cid:0) (cid:5) Chapter(cid:0) Invitation(cid:1) Pair Production in e e(cid:0) Annihilation (cid:0) Figure (cid:2)(cid:3)(cid:6)(cid:3) Feynman diagram for the lowest(cid:3)order term in the e e(cid:0) (cid:0) (cid:0) (cid:0) (cid:0)(cid:0) cross section(cid:4) At this order the only possible intermediate state is a photon(cid:5)(cid:1)(cid:6)(cid:4) where HI is the (cid:21)interaction(cid:22)part of the Hamiltonian(cid:2) In our casethe initial (cid:0) (cid:0) stateis e e(cid:0) andthe(cid:0)nalstateis (cid:0) (cid:0)(cid:0) (cid:2)ButourinteractionHamiltonian j i h j couples electrons to muons only through the electromagnetic (cid:0)eld (cid:3)that is(cid:1) photons(cid:4)(cid:1)notdirectly(cid:2)Sothe(cid:0)rst(cid:5)orderresult(cid:3)(cid:13)(cid:2)(cid:11)(cid:4)vanishes(cid:1)andwemustgo to the second(cid:5)order expression (cid:0) (cid:0) (cid:0) (cid:0) (cid:0)(cid:0) HI (cid:7) (cid:7) HI e e(cid:0) (cid:0)(cid:5) (cid:3)(cid:13)(cid:5)(cid:12)(cid:4) M(cid:4) This is a heuristic way of(cid:1)writing(cid:0) the(cid:0)co(cid:2)nt(cid:1)rib(cid:0)utio(cid:0)n to (cid:2) from the diagramin (cid:0) (cid:0) (cid:0) (cid:0) M (cid:0) Fig(cid:2) (cid:13)(cid:2)(cid:11)(cid:2) The external electron lines correspond to the factor e e(cid:0) (cid:16) the ex(cid:5) (cid:0) j i ternal muon lines correspond to (cid:0) (cid:0)(cid:0) (cid:2) The vertices correspond to HI(cid:1) and h j the internal photon line corresponds to the operator (cid:7) (cid:7) (cid:2) We have added j ih j vector indices (cid:3)(cid:0)(cid:4) because the photon is a vector particle with four compo(cid:5) nents(cid:2) There are four possible intermediate states(cid:1) one for each component(cid:1) and according to the rulesof perturbationtheory we must sum overinterme(cid:5) diate states(cid:2)Note that sincethe sum in (cid:3)(cid:13)(cid:2)(cid:12)(cid:4) takesthe form of a(cid:15)(cid:5)vector dot product(cid:1) the amplitude will be a Lorentz(cid:5)invariant scalar as long as each M half of (cid:3)(cid:13)(cid:2)(cid:12)(cid:4) is a (cid:15)(cid:5)vector(cid:2) (cid:0) Let us try to guess the form of the vector (cid:7) HI e e(cid:0) (cid:0)(cid:2) Since HI cou(cid:5) h j j i ples electrons to photons with a strength e (cid:3)the electron charge(cid:4)(cid:1) the matrix elementshouldbeproportionaltoe(cid:2)Nowconsideroneparticularsetofinitial and (cid:0)nal spin orientations(cid:1) shown in Fig(cid:2) (cid:13)(cid:2)(cid:12)(cid:2) The electron and muon have spins parallel to their directions of motion(cid:16) they are (cid:21)right(cid:5)handed(cid:22)(cid:2) The an(cid:5) tiparticles(cid:1) similarly(cid:1) are (cid:21)left(cid:5)handed(cid:22)(cid:2) The electron and positron spins add up to one unit of angular momentum in the (cid:23)z direction(cid:2) Since HI should conserveangularmomentum(cid:1)thephotontowhichtheseparticlescouplemust have the correct polarization vector to give it this same angular momentum(cid:7) (cid:0) Chapter (cid:0) Invitation(cid:1) Pair Productionin e e(cid:0) Annihilation (cid:7) Figure (cid:2)(cid:3)(cid:0)(cid:3) Onepossiblesetofspinorientations(cid:4)Theelectronandtheneg(cid:3) ative muon are right(cid:3)handed(cid:2) while the positron and the positive muon are left(cid:3)handed(cid:4) (cid:0) (cid:8) (cid:14)(cid:3)(cid:24)(cid:6)(cid:13)(cid:6)i(cid:6)(cid:24)(cid:4)(cid:2) Thus we have (cid:0) (cid:0) (cid:7) HI e e(cid:0) e(cid:3)(cid:24)(cid:6)(cid:13)(cid:6)i(cid:6)(cid:24)(cid:4)(cid:5) (cid:3)(cid:13)(cid:5)(cid:15)(cid:4) (cid:5) The muon matrix e(cid:1)lem(cid:0) ent(cid:0) shou(cid:2)ld(cid:1) similarly(cid:1) have a polarization corre(cid:5) (cid:0) (cid:0) sponding to one unit of angular momentum along the direction of the (cid:0)(cid:0) momentum k(cid:2) To obtain the correct vector(cid:1) rotate (cid:3)(cid:13)(cid:2)(cid:15)(cid:4) through an angle (cid:1) in the xz(cid:5)plane(cid:7) (cid:0) (cid:0) (cid:7) HI (cid:0) (cid:0)(cid:0) e(cid:3)(cid:24)(cid:6)cos(cid:1)(cid:6)i(cid:6) sin(cid:1)(cid:4)(cid:5) (cid:3)(cid:13)(cid:5)(cid:10)(cid:4) (cid:5) (cid:1) To compute the am(cid:1)pl(cid:0)itude(cid:0) (cid:1) w(cid:2)e complex(cid:5)conjugate this vector and dot it (cid:0) (cid:0) M into (cid:3)(cid:13)(cid:2)(cid:15)(cid:4)(cid:2) Thus we (cid:0)nd(cid:1) for this set of spin orientations(cid:1) (cid:1) (cid:3)RL RL(cid:4)(cid:14) e (cid:3)(cid:13)(cid:23)cos(cid:1)(cid:4) (cid:5) (cid:3)(cid:13)(cid:5)(cid:19)(cid:4) M (cid:0) (cid:1) Ofcoursewe cannotdeterminethe overallfactorbythis method(cid:1) but in(cid:3)(cid:13)(cid:2)(cid:19)(cid:4) it happens to be correct(cid:1) thanks to the conventions adopted in (cid:3)(cid:13)(cid:2)(cid:13)(cid:4)(cid:2) Note that the amplitude vanishes for (cid:1) (cid:14) (cid:13)(cid:25)(cid:24)(cid:2)(cid:1) just as one would expect(cid:7) A state whose angular momentum is in the (cid:23)z direction has no overlap with a state whose angular momentum is in the z direction(cid:2) (cid:1) Next considerthe case in which the electronand positronareboth right(cid:5) handed(cid:2)Nowtheirtotal spinangularmomentumiszero(cid:1)andtheargumentis moresubtle(cid:2)Wemightexpecttoobtainalongitudinallypolarizedphotonwith a Clebsch(cid:5)Gordancoe(cid:9)cient of (cid:13)(cid:2)p(cid:11)(cid:1) just aswhen weadd angular momenta in three dimensions(cid:1) (cid:14) (cid:3)(cid:13)(cid:2)p(cid:11)(cid:4) j (cid:14)(cid:13)(cid:6)m(cid:14)(cid:24) (cid:23) j (cid:14)(cid:24)(cid:6)m(cid:14)(cid:24) (cid:2) But we j(cid:6)(cid:7)i j i j i are really adding angular momenta in the four(cid:5)dimensional Lorentz group(cid:1) (cid:3) (cid:4) so we must take into account not only spin (cid:3)the transformation properties of statesunderrotations(cid:4)(cid:1)butalsothetransformationpropertiesofstatesunder boosts(cid:2)Itturnsout(cid:1)asweshalldiscussinChapter(cid:12)(cid:1)thattheClebsch(cid:5)Gordan (cid:0) coe(cid:9)cient that couples a (cid:15)(cid:5)vector to the state e(cid:0)ReR of massless fermions is j i zero(cid:2)(cid:3)Forthe record(cid:1)the stateis asuperpositionofscalarandantisymmetric tensor pieces(cid:2)(cid:4) Thus the amplitude (cid:3)RR RL(cid:4) is zero(cid:1) as are the eleven M (cid:0) (cid:0) (cid:8) Chapter(cid:0) Invitation(cid:1) Pair Production in e e(cid:0) Annihilation otheramplitudesinwhicheithertheinitialor(cid:0)nalstatehaszerototalangular momentum(cid:2) Theremainingnonzeroamplitudescanbe foundinthesamewaythatwe found the (cid:0)rst one(cid:2) They are (cid:1) (cid:3)RL LR(cid:4)(cid:14) e (cid:3)(cid:13) cos(cid:1)(cid:4)(cid:6) M (cid:0) (cid:1) (cid:1) (cid:1) (cid:3)LR RL(cid:4)(cid:14) e (cid:3)(cid:13) cos(cid:1)(cid:4)(cid:6) (cid:3)(cid:13)(cid:5)(cid:26)(cid:4) M (cid:0) (cid:1) (cid:1) (cid:1) (cid:3)LR LR(cid:4)(cid:14) e (cid:3)(cid:13)(cid:23)cos(cid:1)(cid:4)(cid:5) M (cid:0) (cid:1) Insertingtheseexpressionsinto(cid:3)(cid:13)(cid:2)(cid:13)(cid:4)(cid:1)averagingoverthefourinitial(cid:5)statespin orientations(cid:1) and summing overthe four (cid:0)nal(cid:5)state spin orientations(cid:1) we (cid:0)nd (cid:1) d(cid:3) (cid:9) (cid:1) (cid:14) (cid:13)(cid:23)cos (cid:1) (cid:6) (cid:3)(cid:13)(cid:5)(cid:25)(cid:4) (cid:1) d(cid:18) (cid:15)Ecm (cid:1) (cid:3) (cid:4) where (cid:9) (cid:14) e (cid:2)(cid:15)(cid:4) (cid:13)(cid:2)(cid:13)(cid:12)(cid:26)(cid:2) Integrating over the angular variables (cid:1) and (cid:10) (cid:8) gives the total cross section(cid:1) (cid:1) (cid:15)(cid:4)(cid:9) (cid:3)total (cid:14) (cid:1) (cid:5) (cid:3)(cid:13)(cid:5)(cid:27)(cid:4) (cid:12)Ecm Results (cid:3)(cid:13)(cid:2)(cid:25)(cid:4) and (cid:3)(cid:13)(cid:2)(cid:27)(cid:4) agree with experiments to about (cid:13)(cid:24)(cid:28)(cid:16) almost all of the discrepancy is accounted for by the next term in the perturbation series(cid:1) corresponding to the diagrams shown in Fig(cid:2) (cid:13)(cid:2)(cid:15)(cid:2) The qualitative features of these expressions(cid:8)the angular dependence and the sharp decrease with energy(cid:8)are obvious in the actual data(cid:2) (cid:3)The properties of these results are discussed in detail in Section (cid:10)(cid:2)(cid:13)(cid:2)(cid:4) Embellishments and Questions WeobtainedtheangulardistributionpredictedbyQuantumElectrodynamics (cid:0) (cid:0) for the reaction e e(cid:0) (cid:0) (cid:0)(cid:0) by applying angular momentum arguments(cid:1) (cid:0) with little appeal to the underlying formalism(cid:2) However(cid:1) we used the simpli(cid:5) fying featuresof the high(cid:5)energylimit and the center(cid:5)of(cid:5)massframe in a very strong way(cid:2) The analysis we have presented will break down when we relax any of our simplifying assumptions(cid:2) So how does one perform general QED calculations(cid:29) To answer that question we must return to the Feynman rules(cid:2) Asmentionedabove(cid:1)theFeynmanrulestellustodrawthediagram(cid:3)s(cid:4)for the process we are considering(cid:1)and to associate a short algebraic factor with each piece of each diagram(cid:2) Figure (cid:13)(cid:2)(cid:10) shows the diagram for our reaction(cid:1) with the various assignments indicated(cid:2) (cid:1) For the internal photon line we write ig(cid:0)(cid:1)(cid:2)q (cid:1) where g(cid:0)(cid:1) is the usual (cid:1) Minkowskimetrictensorandqisthe(cid:15)(cid:5)momentumofthevirtualphoton(cid:2)This factor corresponds to the operator (cid:7) (cid:7) in our heuristic expression (cid:3)(cid:13)(cid:2)(cid:12)(cid:4)(cid:2) (cid:0)j ih j Foreachvertexwewrite ie(cid:7) (cid:1)correspondingtoHI in(cid:3)(cid:13)(cid:2)(cid:12)(cid:4)(cid:2)Theobjects (cid:0) (cid:1) (cid:7) area setoffour(cid:15) (cid:15)constantmatrices(cid:2)Theydothe (cid:21)additionofangular (cid:9) (cid:0) Chapter (cid:0) Invitation(cid:1) Pair Productionin e e(cid:0) Annihilation (cid:9) (cid:2) Figure (cid:2)(cid:3)(cid:1)(cid:3) Feynman diagrams that contribute to the (cid:2) term in the (cid:0) (cid:0) e e(cid:0) (cid:0) (cid:0)(cid:0) cross section(cid:4) (cid:0) Figure (cid:2)(cid:3)(cid:4)(cid:3) Diagram of Fig(cid:4) (cid:0)(cid:4)(cid:7)(cid:2) with expressions corresponding to each vertex(cid:2) internal line(cid:2) andexternal line(cid:4) momentum(cid:22) for us(cid:1) coupling a state of two spin(cid:5)(cid:13)(cid:2)(cid:11) particles to a vector particle(cid:2) The external lines carry expressions for four(cid:5)component column(cid:5)spinors u(cid:1)v(cid:1)orrow(cid:5)spinorsu(cid:1)v(cid:2)Theseareessentiallythemomentum(cid:5)spacewavefunc(cid:5) (cid:0) (cid:0) tions of the initial and (cid:0)nal particles(cid:1) and correspond to e e(cid:0) and (cid:0) (cid:0)(cid:0) j i h j in (cid:3)(cid:13)(cid:2)(cid:12)(cid:4)(cid:2) The indices s(cid:1) s(cid:1)(cid:1) r(cid:1) and r(cid:1) denote the spin state(cid:1) either up or down(cid:2) (cid:0) (cid:2)(cid:10) Chapter (cid:0) Invitation(cid:1) Pair Production ine e(cid:0) Annihilation Wecannowwritedownanexpressionfor (cid:1)readingeverythingstraight M o(cid:17) the diagram(cid:7) s(cid:0) (cid:0) s ig(cid:0)(cid:1) r (cid:1) r(cid:0) (cid:14)v (cid:3)p(cid:1)(cid:4) ie(cid:7) u (cid:3)p(cid:4) (cid:1) (cid:1) u (cid:3)k(cid:4) ie(cid:7) v (cid:3)k(cid:1)(cid:4) M (cid:1) q (cid:1) (cid:5) (cid:6) (cid:3)(cid:13)(cid:5)(cid:13)(cid:24)(cid:4) ie(cid:1) s(cid:3)(cid:0) (cid:0)(cid:4)s r r(cid:0) (cid:3) (cid:4) (cid:14) (cid:1) v (cid:3)p(cid:1)(cid:4)(cid:7) u (cid:3)p(cid:4) u (cid:3)k(cid:4)(cid:7)(cid:0)v (cid:3)k(cid:1)(cid:4) (cid:5) q (cid:3) (cid:4)(cid:3) (cid:4) It is instructive to compare this in detail with Eq(cid:2) (cid:3)(cid:13)(cid:2)(cid:12)(cid:4)(cid:2) To derive the cross section (cid:3)(cid:13)(cid:2)(cid:25)(cid:4) from (cid:3)(cid:13)(cid:2)(cid:13)(cid:24)(cid:4)(cid:1) we could return to the an(cid:5) gular momentum arguments used above(cid:1) supplemented with some concrete knowledge about (cid:7) matrices and Dirac spinors(cid:2) We will do the calculation in this manner in Section (cid:10)(cid:2)(cid:11)(cid:2) There are(cid:1) however(cid:1) a number of useful tricks that can be employed to manipulate expressions like (cid:3)(cid:13)(cid:2)(cid:13)(cid:24)(cid:4)(cid:1) especially when one wants to compute only the unpolarized cross section(cid:2) Using this (cid:21)Feyn(cid:5) man trace technology(cid:22) (cid:3)so(cid:5)called because one must evaluate traces of prod(cid:5) ucts of (cid:7)(cid:5)matrices(cid:4)(cid:1) it isn(cid:6)t even necessary to have explicit expressions for the(cid:7)(cid:5)matricesandDiracspinors(cid:2)Thecalculationbecomesalmostcompletely mindless(cid:1) and the answer (cid:3)(cid:13)(cid:2)(cid:25)(cid:4) is obtained after less than a page of algebra(cid:2) But since the Feynman rules and trace technology are so powerful(cid:1) we can also relax some of our simplifying assumptions(cid:2) To conclude this section(cid:1) let usdiscussseveralwaysinwhichourcalculationcouldhavebeenmoredi(cid:9)cult(cid:2) Theeasiestrestrictiontorelaxisthatthemuonsbemassless(cid:2)Ifthebeam energy is not much greater than the mass of the muon(cid:1) all of our predic(cid:5) tions should depend on the ratio m(cid:0)(cid:2)Ecm(cid:2) (cid:3)Since the electron is (cid:11)(cid:24)(cid:24) times lighter than the muon(cid:1) it can be considered massless whenever the beam en(cid:5) ergy is large enough to create muons(cid:2)(cid:4) Using Feynman trace technology(cid:1) it is extremely easy to restore the muon mass to our calculation(cid:2) The amount of algebraisincreasedbyabout(cid:0)ftypercent(cid:1)and the relation(cid:3)(cid:13)(cid:2)(cid:13)(cid:4)betweenthe amplitude and the cross section must be modi(cid:0)ed slightly(cid:1) but the answer is worth the e(cid:17)ort(cid:2) We do this calculation in detail in Section (cid:10)(cid:2)(cid:13)(cid:2) Working in a di(cid:17)erent reference frame is also easy(cid:16) the only modi(cid:0)cation is in the relation (cid:3)(cid:13)(cid:2)(cid:13)(cid:4) between the amplitude and the cross section(cid:2) Or one can simply perform a Lorentz transformation on the CM result(cid:1) boosting it to a di(cid:17)erent frame(cid:2) When the spin states of the initial and(cid:30)or (cid:0)nal particles are known and we still wish to retain the muon mass(cid:1) the calculation becomes somewhat cumbersome but no more di(cid:9)cult in principle(cid:2) The trace technology can be generalized to this case(cid:1) but it is often easier to evaluate expression (cid:3)(cid:13)(cid:2)(cid:13)(cid:24)(cid:4) directly(cid:1) using the explicit values of the spinors u and v(cid:2) Nextonecouldcomputecrosssectionsfordi(cid:17)erentprocesses(cid:2)Theprocess (cid:0) (cid:0) e e(cid:0) e e(cid:0)(cid:1) known as Bhabha scattering(cid:1) is more di(cid:9)cult because there is (cid:0) asecondalloweddiagram(cid:3)seeFig(cid:2)(cid:13)(cid:2)(cid:19)(cid:4)(cid:2)Theamplitudesforthetwodiagrams must (cid:0)rst be added(cid:1) then squared(cid:2) Other processes contain photons in the initial and(cid:30)or (cid:0)nal states(cid:2) The

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.