DE GRUYTER Michael V. Sadovskii QUANTUM FIELD THEORY STUDIES IN MATHEMATICAL PHYSICS 17 De Gruyter Studies in Mathematical Physics 17 Editors MichaelEfroimsky,Bethesda,USA LeonardGamberg,Reading,USA DmitryGitman,SãoPaulo,Brasil AlexanderLazarian,Madison,USA BorisSmirnov,Moscow,Russia Michael V. Sadovskii Quantum Field Theory De Gruyter PhysicsandAstronomyClassificationScheme2010:03.70.+k,03.65.Pm,11.10.-z,11.10.Gh, 11.10.Jj, 11.25.Db, 11.15.Bt, 11.15.Ha, 11.15.Ex, 11.30. -j, 12.20.-m, 12.38.Bx, 12.10.-g, 12.38.Cy. ISBN978-3-11-027029-7 e-ISBN978-3-11-027035-8 LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailedbibliographicdataareavailableintheInternetathttp://dnb.dnb.de. © 2013WalterdeGruyterGmbH,Berlin/Boston Typesetting:PTP-BerlinProtago-TEX-ProductionGmbH,www.ptp-berlin.de Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen Printedonacid-freepaper PrintedinGermany www.degruyter.com Preface ThisbookistherevisedEnglishtranslationofthe2003Russianeditionof“Lectureson QuantumFieldTheory”,whichwasbasedonmuchextendedlecturecoursetaughtby theauthorsince1991attheUralStateUniversity,Ekaterinburg.Itisaddressedmainly tograduateandPhDstudents,aswellastoyoungresearchers,whoareworkingmainly incondensedmatterphysicsandseekingacompactandrelativelysimpleintroduction to the major section of modern theoretical physics, devoted to particles and fields, which remains relatively unknown to the condensed matter community, largely un- awareofthemajorprogressrelatedtotheformulationtheso-called“standardmodel” ofelementaryparticles,whichisatthemomentthemostfundamentaltheoryofmatter confirmedbyexperiments.Infact,thisbookdiscussesthemainconceptsofthisfun- damentaltheorywhicharebasicandnecessary(intheauthor’sopinion)foreveryone startingprofessionalresearchworkinotherareasoftheoreticalphysics,notrelatedto high-energyphysicsandthetheoryofelementaryparticles,suchascondensedmatter theory. This is actually even more important, as many of the theoretical approaches developedinquantumfieldtheoryarenowactivelyusedincondensedmattertheory, andmanyoftheconceptsofcondensedmattertheoryarenowwidelyusedinthecon- structionofthe“standardmodel”ofelementaryparticles.Oneofthemainaimsofthe bookistoillustratethisunityofmoderntheoreticalphysics,widelyusingtheanalogies betweenquantumfieldtheoryandmoderncondensedmattertheory. Incontrasttomanybooksonquantumfieldtheory[2,6,8–10,13,25,28,53,56,59, 60],mostofwhichusuallyfollowratherdeductivepresentationofthematerial,here we use a kind of inductive approach (similar to that used in [59,60]), when one and thesameproblemisdiscussedseveraltimesusingdifferentapproaches.Intheauthor’s opinionsuchrepetitionsareusefulforamoredeepunderstandingofthevariousideas andmethodsusedforsolvingrealproblems.Ofcourse,amongthebooksmentioned above,theauthorwasmuchinfluencedby[6,56,60],andthisinfluenceisobviousin manypartsofthetext.However,thechoiceofmaterialandtheformofpresentationis essentiallyhisown.ForthepresentEnglisheditionsomeofthematerialwasrewritten, bringingthecontentmoreuptodateandaddingmorediscussiononsomeofthemore difficultcases. Thecentralideaofthisbookisthepresentationofthebasicsofthegaugefieldthe- oryofinteractingelementaryparticles.Astothemethods,wepresentaratherdetailed derivationoftheFeynmandiagramtechnique,whichlongagoalsobecamesoimpor- tant for condensed matter theory. We also discuss in detail the method of functional (path)integralsinquantumtheory,whichisnowalsowidelyusedinmanysectionsof theoreticalphysics. vi Preface Welimitourselvestothisrelativelytraditionalmaterial,droppingsomeofthemore modern (but more speculative) approaches, such as supersymmetry. Obviously, we also drop the discussion of some new ideas which are in fact outside the domain of thequantumfieldtheory,suchasstringsandsuperstrings.Alsowedonotdiscussin anydetailtheexperimentalaspectsofmodernhigh-energyphysics(particlephysics), usingonlyafewillustrativeexamples. Ekaterinburg,2012 M.V.Sadovskii Contents Preface v 1 Basicsofelementaryparticles 1 1.1 Fundamentalparticles..................................... 1 1.1.1 Fermions ........................................ 2 1.1.2 Vectorbosons..................................... 3 1.2 Fundamentalinteractions .................................. 4 1.3 TheStandardModelandperspectives ........................ 5 2 Lagrangeformalism.Symmetriesandgaugefields 9 2.1 Lagrangemechanicsofaparticle ............................ 9 2.2 Realscalarfield.Lagrangeequations ......................... 11 2.3 TheNoethertheorem ..................................... 15 2.4 Complexscalarandelectromagneticfields .................... 18 2.5 Yang–Millsfields ........................................ 24 2.6 Thegeometryofgaugefields ............................... 30 2.7 Arealisticexample–chromodynamics ....................... 38 3 Canonicalquantization,symmetriesinquantumfieldtheory 40 3.1 Photons ................................................ 40 3.1.1 Quantizationoftheelectromagneticfield ............... 40 3.1.2 RemarksongaugeinvarianceandBosestatistics ......... 45 3.1.3 VacuumfluctuationsandCasimireffect ................ 48 3.2 Bosons ................................................ 50 3.2.1 Scalarparticles .................................... 50 3.2.2 Trulyneutralparticles .............................. 54 3.2.3 CPT-transformations .............................. 57 3.2.4 Vectorbosons..................................... 61 3.3 Fermions ............................................... 63 3.3.1 Three-dimensionalspinors ........................... 63 3.3.2 SpinorsoftheLorentzgroup ......................... 67 3.3.3 TheDiracequation ................................. 74 3.3.4 ThealgebraofDirac’smatrices ....................... 79 3.3.5 Planewaves ...................................... 81 viii Contents 3.3.6 Spinandstatistics .................................. 83 3.3.7 C,P,T transformationsforfermions .................. 85 3.3.8 Bilinearforms .................................... 86 3.3.9 Theneutrino ...................................... 87 4 TheFeynmantheoryofpositronandelementaryquantum electrodynamics 93 4.1 Nonrelativistictheory.Green’sfunctions ...................... 93 4.2 Relativistictheory........................................ 96 4.3 Momentumrepresentation ................................. 100 4.4 Theelectroninanexternalelectromagneticfield ................ 103 4.5 Thetwo-particleproblem .................................. 110 5 Scatteringmatrix 115 5.1 Scatteringamplitude ...................................... 115 5.2 Kinematicinvariants...................................... 118 5.3 Unitarity ............................................... 121 6 Invariantperturbationtheory 124 6.1 SchroedingerandHeisenbergrepresentations .................. 124 6.2 Interactionrepresentation .................................. 125 6.3 S-matrixexpansion ...................................... 128 6.4 Feynmandiagramsforelectronscatteringinquantum electrodynamics ......................................... 135 6.5 Feynmandiagramsforphotonscattering ...................... 140 6.6 Electronpropagator ...................................... 142 6.7 Thephotonpropagator .................................... 146 6.8 TheWicktheoremandgeneraldiagramrules .................. 149 7 Exactpropagatorsandvertices 156 7.1 FieldoperatorsintheHeisenbergrepresentationandinteraction representation ........................................... 156 7.2 Theexactpropagatorofphotons ............................ 158 7.3 Theexactpropagatorofelectrons ........................... 164 7.4 Vertexparts ............................................ 168 7.5 Dysonequations ......................................... 172 7.6 Wardidentity ........................................... 173 Contents ix 8 Someapplicationsofquantumelectrodynamics 175 8.1 Electronscatteringbystaticcharge:higherordercorrections ...... 175 8.2 TheLambshiftandtheanomalousmagneticmoment ............ 180 8.3 Renormalization–howitworks............................. 185 8.4 “Running”thecouplingconstant ............................ 189 8.5 AnnihilationofeCe(cid:2) intohadrons.Proofoftheexistenceofquarks 191 8.6 Thephysicalconditionsforrenormalization ................... 192 8.7 Theclassificationandeliminationofdivergences ............... 196 8.8 Theasymptoticbehaviorofaphotonpropagatoratlargemomenta . 200 8.9 Relationbetweenthe“bare”and“true”charges ................ 203 8.10 TherenormalizationgroupinQED .......................... 207 8.11 Theasymptoticnatureofaperturbationseries .................. 209 9 Pathintegralsandquantummechanics 211 9.1 Quantummechanicsandpathintegrals ....................... 211 9.2 Perturbationtheory ....................................... 219 9.3 Functionalderivatives .................................... 225 9.4 Somepropertiesoffunctionalintegrals ....................... 226 10 Functionalintegrals:scalarsandspinors 232 10.1 Generatingthefunctionalforscalarfields ..................... 232 10.2 Functionalintegration..................................... 237 10.3 FreeparticleGreen’sfunctions ............................. 240 10.4 Generatingthefunctionalforinteractingfields ................. 247 10.5 '4 theory............................................... 250 10.6 Thegeneratingfunctionalforconnecteddiagrams .............. 257 10.7 Self-energyandvertexfunctions ............................ 260 10.8 Thetheoryofcriticalphenomena ............................ 264 10.9 Functionalmethodsforfermions ............................ 277 10.10 PropagatorsandgaugeconditionsinQED ..................... 285 11 Functionalintegrals:gaugefields 287 11.1 Non-AbeliangaugefieldsandFaddeev–Popovquantization ....... 287 11.2 Feynmandiagramsfornon-Abeliantheory .................... 293