ebook img

Quantum Error Correction PDF

690 Pages·2013·7.158 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Error Correction

QUANTUM ERROR CORRECTION Quantumcomputationandinformationareamongthemostexcitingdevelopmentsinscienceand technologyofthelast20years.Toachievelarge-scalequantumcomputersandcommunication networks it is essential to overcome noise not only in stored quantum information, but also in generalfaultyquantumoperations.Scalablequantumcomputersrequireafar-reachingtheoryof fault-tolerantquantumcomputation. This comprehensive text, written by leading experts in the field, focuses on quantum error correction,andthoroughlycoversthetheoryaswellasexperimentalandpracticalissues.Thebook isnotlimitedtoasingleapproach,butalsoreviewsmanydifferentmethodstocontrolquantum errors,includingtopologicalcodes,dynamicaldecoupling,anddecoherence-freesubspaces. Basicsubjectsaswellasadvancedtheoryandasurveyoftopicsfromcutting-edgeresearch make this book invaluable both as a pedagogical introduction at the graduate level and as a referenceforexpertsinquantuminformationscience. daniel a. lidar is a Professor of Electrical Engineering, Chemistry, and Physics at the UniversityofSouthernCalifornia,anddirectstheUSCCenterforQuantumInformationScience andTechnology.HereceivedhisPh.D.inPhysicsfromtheHebrewUniversityofJerusalem,was a postdoctoral fellow at UC Berkeley, and a faculty member at the University of Toronto. He was elected a Fellow of the American Association for the Advancement of Science and of the American Physical Society for his contributions to the theory of decoherence control of open quantumsystemsforquantuminformationprocessing. todd a. brun is an Associate Professor of Electrical Engineering, Physics, and Computer Science at the University of Southern California. He received his Ph.D. from the California InstituteofTechnology,andheldpostdoctoralpositionsattheUniversityofLondon,theInstitute for Theoretical Physics in Santa Barbara, Carnegie Mellon University, and the Institute for AdvancedStudyinPrinceton.Hehasworkedbroadlyondecoherenceandthequantumtheoryof opensystems,quantumerrorcorrection,andrelatedtopicsforquantuminformationprocessing. QUANTUM ERROR CORRECTION Editedby DANIEL A. LIDAR UniversityofSouthernCalifornia TODD A. BRUN UniversityofSouthernCalifornia UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9780521897877 (cid:2)C CambridgeUniversityPress2013 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2013 PrintedintheUnitedKingdombyCPIGroupLtd,CroydonCR04YY AcatalogrecordforthispublicationisavailablefromtheBritishLibrary ISBN978-0-521-89787-7Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Listofcontributors pagexi Prologue xv Prefaceandguidetothereader xix Acknowledgements xxi PartI Background 1 1 Introductiontodecoherenceandnoiseinopenquantumsystems 3 DanielA.LidarandToddA.Brun 1.1 Introduction 3 1.2 Briefintroductiontoquantummechanicsandquantumcomputing 4 1.3 Masterequations 26 1.4 Stochasticerrormodels 32 1.5 Conclusions 45 2 Introductiontoquantumerrorcorrection 46 DaveBacon 2.1 Errorcorrection 46 2.2 Fromreversibleclassicalerrorcorrectiontosimplequantumerrorcorrection 48 2.3 Thequantumerror-correctingcriterion 56 2.4 Thedistanceofaquantumerror-correctingcode 59 2.5 Content of the quantum error-correcting criterion and the quantum Hammingbound 59 2.6 Digitizingquantumnoise 60 2.7 Classicallinearcodes 61 2.8 Calderbank,Shor,andSteanecodes 64 2.9 Stabilizerquantumerror-correctingcodes 65 2.10 Conclusions 76 2.11 Historyandfurtherreading 76 v vi Contents 3 Introductiontodecoherence-freesubspacesandnoiselesssubsystems 78 DanielA.Lidar 3.1 Introduction 78 3.2 A“classicaldecoherence-freesubspace” 78 3.3 Collectivedephasingdecoherence-freesubspace 79 3.4 Decoherence-freesubspacedefinedandcharacterized 81 3.5 Initialization-freedecoherence-freesubspace 90 3.6 Noiselesssubsystems 92 3.7 Initialization-freenoiselesssubsystems 98 3.8 Protectionagainstadditionaldecoherencesources 101 3.9 Conclusions 102 3.10 Historyandfurtherreading 102 4 Introductiontoquantumdynamicaldecoupling 105 LorenzaViola 4.1 Motivationandoverview 105 4.2 Warmup:bang-bangdecouplingofqubitdephasing 107 4.3 Control-theoreticframework 110 4.4 Bang-bangperiodicdecoupling 113 4.5 Theneedforadvanceddecouplingdesign 119 4.6 Bounded-strengthEuleriandecoupling 120 5 Introductiontoquantumfaulttolerance 126 PanosAliferis 5.1 Quantumcircuitsanderrordiscretization 127 5.2 Noisyquantumcomputers 130 5.3 Encodedquantumcomputation 142 5.4 Coarse-grainednoiseandlevelreduction 152 5.5 Thequantumaccuracythreshold 155 5.6 Assessment 157 5.7 Historyandfurtherreading 158 PartII Generalizedapproachestoquantumerrorcorrection 161 6 Operatorquantumerrorcorrection 163 DavidKribsandDavidPoulin 6.1 Introduction 163 6.2 EquivalentconditionsforOQEC 165 6.3 StabilizerformalismforOQEC 169 6.4 Examples 172 6.5 Measuringgaugeoperators 175 6.6 Boundsforsubsystemcodes 177 6.7 Unitarilycorrectablecodes 179 7 Entanglement-assistedquantumerror-correctingcodes 181 ToddA.BrunandMin-HsiuHsieh 7.1 Introduction 181 7.2 ConstructingEAQECCs 184 Contents vii 7.3 ConstructingEAQECCsfromclassicallinearcodes 195 7.4 CatalyticQECCs 197 7.5 Conclusions 199 8 Continuous-timequantumerrorcorrection 201 OgnyanOreshkov 8.1 Introduction 201 8.2 CTQECinanencodedbasis 204 8.3 Quantum-jumpCTQECwithweakmeasurements 207 8.4 Schemeswithindirectfeedback 213 8.5 QuantumjumpsforMarkovianandnon-Markoviannoise 218 8.6 Outlook 226 PartIII Advancedquantumcodes 229 9 Quantumconvolutionalcodes 231 MarkWilde 9.1 Introduction 231 9.2 Definitionandoperationofquantumconvolutionalcodes 235 9.3 Mathematicalformalismofquantumconvolutionalcodes 238 9.4 Quantumshift-registercircuits 244 9.5 Examplesofquantumconvolutionalcodes 249 9.6 Entanglement-assistedquantumconvolutionalcodes 253 9.7 Closingremarks 260 10 Nonadditivequantumcodes 261 MarkusGrasslandMartinRo¨tteler 10.1 Introduction 261 10.2 Stabilizercodes 262 10.3 Characterizationofnonadditivequantumcodes 263 10.4 ConstructionofnonadditiveQECCs 268 10.5 Quantumcircuits 274 10.6 Conclusions 277 11 Iterativequantumcodingsystems 279 DavidPoulin 11.1 Introduction 279 11.2 Decoding 284 11.3 Turbo-codes 292 11.4 Sparsecodes 297 11.5 Conclusion 305 12 Algebraicquantumcodingtheory 307 AndreasKlappenecker 12.1 Quantumstabilizercodes 307 12.2 Cycliccodes 317 12.3 QuantumBCHcodes 318 12.4 QuantumMDScodes 325 viii Contents 13 Optimization-basedquantumerrorcorrection 327 AndrewFletcher 13.1 Limitationoftheindependentarbitraryerrorsmodel 327 13.2 DefiningaQECoptimizationproblem 328 13.3 Maximizingaverageentanglementfidelity 331 13.4 Minimizingchannelnonideality:theindirectmethod 336 13.5 Robustnesstochannelperturbations 338 13.6 Structurednear-optimaloptimization 340 13.7 Optimizationfor(approximate)decoherence-freesubspaces 346 13.8 Conclusion 347 PartIV Advanceddynamicaldecoupling 349 14 High-orderdynamicaldecoupling 351 Zhen-YuWangandRen-BaoLiu 14.1 Introduction 351 14.2 Operatorsetpreservation 351 14.3 Dynamicaldecouplingformulti-qubitsystems 353 14.4 Concatenateddynamicaldecoupling 355 14.5 Uhrigdynamicaldecoupling 357 14.6 ConcatenatedUhrigdynamicaldecoupling 365 14.7 Quadraticdynamicaldecoupling 366 14.8 NestedUhrigdynamicaldecoupling 367 14.9 Pulsesoffiniteamplitude 368 14.10 Time-dependentHamiltonians 369 14.11 Randomizeddynamicaldecoupling 372 14.12 Experimentalprogress 373 14.13 Discussion 374 15 Combinatorialapproachestodynamicaldecoupling 376 MartinRo¨ttelerandPawelWocjan 15.1 Introduction 376 15.2 Combinatorialbang-bangdecoupling 378 15.3 Combinatorialboundedstrengthdecoupling 391 15.4 Conclusionsandfuturedirections 393 PartV Alternativequantumcomputationapproaches 395 16 Holonomicquantumcomputation 397 PaoloZanardi 16.1 Introduction 397 16.2 Holonomicquantumcomputation 398 16.3 HQCwithquantumdots 400 16.4 Robustness 403 16.5 HybridizingHQCanderror-avoiding/correctingtechniques 406 16.6 Conclusions 407 Appendix:quantumholonomies 408

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.