ebook img

Quantum Dots for Plant Systems PDF

205 Pages·2022·10.709 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Dots for Plant Systems

Nanotechnology in the Life Sciences Abdul Majid Humaira Arshad Muhammad Azmat Ullah Khan Quantum Dots for Plant Systems Nanotechnology in the Life Sciences Series Editor Ram Prasad, Department of Botany Mahatma Gandhi Central University Motihari, Bihar, India Nano and biotechnology are two of the 21st century’s most promising technologies. Nanotechnology is demarcated as the design, development, and application of materials and devices whose least functional make up is on a nanometer scale (1 to 100 nm). Meanwhile, biotechnology deals with metabolic and other physiological developments of biological subjects including microorganisms. These microbial processes have opened up new opportunities to explore novel applications, for example, the biosynthesis of metal nanomaterials, with the implication that these two technologies (i.e., thus nanobiotechnology) can play a vital role in developing and executing many valuable tools in the study of life. Nanotechnology is very diverse, ranging from extensions of conventional device physics to completely new approaches based upon molecular self-assembly, from developing new materials with dimensions on the nanoscale, to investigating whether we can directly control matters on/in the atomic scale level. This idea entails its application to diverse fields of science such as plant biology, organic chemistry, agriculture, the food industry, and more. Nanobiotechnology offers a wide range of uses in medicine, agriculture, and the environment. Many diseases that do not have cures today may be cured by nanotechnology in the future. Use of nanotechnology in medical therapeutics needs adequate evaluation of its risk and safety factors. Scientists who are against the use of nanotechnology also agree that advancement in nanotechnology should continue because this field promises great benefits, but testing should be carried out to ensure its safety in people. It is possible that nanomedicine in the future will play a crucial role in the treatment of human and plant diseases, and also in the enhancement of normal human physiology and plant systems, respectively. If everything proceeds as expected, nanobiotechnology will, one day, become an inevitable part of our everyday life and will help save many lives. Abdul Majid • Humaira Arshad Muhammad Azmat Ullah Khan Quantum Dots for Plant Systems Abdul Majid Humaira Arshad Department of Physics Department of Physics University of Gujrat University of Gujrat Gujrat, Pakistan Gujrat, Pakistan Muhammad Azmat Ullah Khan Deptartment of Biochemistry and Biotechnology University of Gujrat Gujrat, Pakistan ISSN 2523-8027 ISSN 2523-8035 (electronic) Nanotechnology in the Life Sciences ISBN 978-3-031-10215-8 ISBN 978-3-031-10216-5 (eBook) https://doi.org/10.1007/978-3-031-10216-5 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Nanomaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Silent Feature of Nanomaterials . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Challenges for Nanomaterials . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Use of Nanomaterials in Plant Systems . . . . . . . . . . . . . . . . . . . . . 5 1.3 Basic Theme and Overview of the Book . . . . . . . . . . . . . . . . . . . . 6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Quantum Dots: Synthesis, Properties, and Applications . . . . . . . . . . . 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Surface Structure of Quantum Dots . . . . . . . . . . . . . . . . . . 14 2.2.2 Shell/Multi Shell Structure of Quantum Dots . . . . . . . . . . 16 2.3 Properties of Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 Quantum Confinement Effect . . . . . . . . . . . . . . . . . . . . . . 18 2.3.2 Band Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.3 Luminescence Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Synthesis Methods of Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.1 Top-Down Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.2 Bottom-Up Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5 Applications of Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5.1 Quantum Dots for LEDs and Display Applications . . . . . 34 2.5.2 Photo-Conductors and Photo-Detectors . . . . . . . . . . . . . . 35 2.5.3 Environmental and Biomedical Applications . . . . . . . . . . 35 2.5.4 Photovoltaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5.5 Catalysis and Other Applications . . . . . . . . . . . . . . . . . . . . 36 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3 Graphene Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.1 Utilization of Graphene QDs . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 Characteristics of Graphene QDs . . . . . . . . . . . . . . . . . . . . . . . . . . 50 v vi Contents 3.2.1 Physical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2.2 Electronic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.3 Photoluminescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3 Functionalization of Graphene QDs . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.1 Controlling Shape and Size of Graphene QDs . . . . . . . . . 56 3.3.2 Formation of Graphene QDs Composites . . . . . . . . . . . . . 57 3.3.3 Doping in Graphene QDs . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.4 Applications of Graphene QDs in Plants . . . . . . . . . . . . . . . . . . . . 62 3.4.1 Graphene QDs for Plant Growth . . . . . . . . . . . . . . . . . . . . 62 3.4.2 Graphene QDs for Plant Protection . . . . . . . . . . . . . . . . . . 63 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4 Carbon Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Physical and Chemical Properties of CQDs . . . . . . . . . . . . . . . . . . 80 4.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.2 Photoluminescence of CQDs . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.3 Fluorescence of CQDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2.4 Absorbance in CQDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2.5 Surface Passivation and Doping . . . . . . . . . . . . . . . . . . . . 82 4.2.6 Electroluminescence of CQDs . . . . . . . . . . . . . . . . . . . . . . 84 4.3 Functionalization of CQDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4 Applications of CQDs in Plant Systems . . . . . . . . . . . . . . . . . . . . . 86 4.4.1 CQDs for Take-Up, Translocation, and Accumulation in Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.4.2 CQDs for Photosynthesis in Plants . . . . . . . . . . . . . . . . . . 87 4.4.3 CQDs for Nutrition Assimilation in Plants . . . . . . . . . . . . 89 4.4.4 CQDs for Plant Growth and Development . . . . . . . . . . . . 90 4.4.5 CQDs for Antibacterial Activity . . . . . . . . . . . . . . . . . . . . 91 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5 Transport Mechanism from Quantum Dots to Plant Systems . . . . . . 103 5.1 Interactions of QDs with Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.1.1 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.1.2 Size Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.1.3 Disaggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.1.4 Surface Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.2 Mechanism of Studding QDs in Plants . . . . . . . . . . . . . . . . . . . . . 105 5.2.1 Attachment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2.2 Straining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.3 Transportation of QDs from Soil to Plant Cell . . . . . . . . . . . . . . . . 107 5.3.1 Endocytosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3.2 Pore Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.3.3 Carrier Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.3.4 Ion Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.3.5 Plasmodesmata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Contents vii 5.4 Transport Mechanism of QDs Within Plant Roots . . . . . . . . . . . . . 112 5.4.1 Apoplastic Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4.2 Symplastic Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.5 Transport Mechanism of QDs from Roots to Shoots . . . . . . . . . . . 116 5.6 Transport Mechanism of QDs Within Plant Shoots . . . . . . . . . . . . 118 5.7 Absorption of QDs Through Arial Parts . . . . . . . . . . . . . . . . . . . . . 121 5.7.1 Lipophilic Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.7.2 Hydrophilic Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.7.3 Trichome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.7.4 Lenticels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.7.5 Stomatal Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.8 Comparison of QDs with Conventional Fertilizers . . . . . . . . . . . . 123 5.8.1 Conventional/Biofertilizers . . . . . . . . . . . . . . . . . . . . . . . . 124 5.8.2 Production of Biofertilizers . . . . . . . . . . . . . . . . . . . . . . . . 124 5.8.3 Mechanisms of Biofertilizers . . . . . . . . . . . . . . . . . . . . . . . 125 5.8.4 The Fate and Practice of Organic Fertilizers in Agricultural Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.9 Nanofertilizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.9.1 Macronutrients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.9.2 Micronutrients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6 QDs for Sensing of Microorganisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.1 Biological Sensing Materials of QD-Based Biosensors . . . . . . . . . 138 6.2 Sensing Mechanism of QD Based Biosensors . . . . . . . . . . . . . . . . 138 6.2.1 QD-Based Electrochemical Biosensor . . . . . . . . . . . . . . . 138 6.2.2 QDs Based Photoelectrochemical (PEC) Biosensors . . . . 139 6.2.3 Water-Soluble CdTe-QDs . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.2.4 QD Based Optical Biosensor . . . . . . . . . . . . . . . . . . . . . . . 140 6.2.5 QDs Based Enzyme-Coupled Biosensor . . . . . . . . . . . . . . 140 6.2.6 QDs Based Electrochemiluminescence Sensors . . . . . . . . 141 6.2.7 Quantum Dot-Based Fluorescent Biosensors . . . . . . . . . . 141 6.3 QDs Based Sensing for Plant Bacteria . . . . . . . . . . . . . . . . . . . . . . 143 6.3.1 QDs Based Biosensors for Bacterial Detection . . . . . . . . . 143 6.3.2 ZnS: Mn+2 QDs to Detect Bacteria . . . . . . . . . . . . . . . . . . 144 6.3.3 Gram-Negative Bacteria and CdTe QDs . . . . . . . . . . . . . . 144 6.3.4 QDs Based Biosensing of Bacillus thuringiensis (Bt) . . . . 145 6.3.5 Detection of “Escherichia coli, Salmonella and Listeria monocytogenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.4 QDs Based Sensing for Plant Fungi . . . . . . . . . . . . . . . . . . . . . . . . 146 6.4.1 Cadmium-Telluride QDs (CdTe-QDs) to Detect Plasmodiophoromycete Polymyxa betae . . . . . . . . . . . . . . 148 6.4.2 Cy5-Labeled QDs to Detect Ganoderma boninense . . . . . 148 viii Contents 6.5 QDs Based Biosensors for Plant Virus Detection . . . . . . . . . . . . . . 148 6.5.1 Detection of Plant Viruses Using Biosensors . . . . . . . . . . 149 6.5.2 Lateral Flow Immuno Assay (LFIA) . . . . . . . . . . . . . . . . . 152 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 7 QDs, Plant Diseases and Potential Risks . . . . . . . . . . . . . . . . . . . . . . . . 161 7.1 Nanofertilizer Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.2 Integrated Pest Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.2.1 Pesticides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.2.2 Pesticide Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.3 Nanopesticides Against Plant Diseases . . . . . . . . . . . . . . . . . . . . . 164 7.3.1 Fungal Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 7.3.2 Bacterial Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.3.3 Nematodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 7.3.4 Nano-Herbicides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 7.3.5 Nano-Insecticides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 7.3.6 Plant Viruses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7.4 RNA Based Nanopesticides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7.4.1 Procedure for Nanoparticle-Mediated dsRNA/siRNA Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7.4.2 Encapsulation or Binding by Nucleic Acids . . . . . . . . . . . 173 7.4.3 Uptake at Cellular Level . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.4.4 Endosomal Escape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.4.5 Nucleic Acid Release or Separation from Nanocomplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.5 QDs – A Potential Threat to Plants . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.5.1 Genetics and Gene Expression . . . . . . . . . . . . . . . . . . . . . 176 7.5.2 Antioxidant Activity of Plants . . . . . . . . . . . . . . . . . . . . . . 176 7.5.3 Development and Growth . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.5.4 Toxicity of QDs on Plants . . . . . . . . . . . . . . . . . . . . . . . . . 177 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Abbreviations A TBAP Acetonitrile tetrabutylammonium perchlorate ATP Adenosine triphosphate ApCP Albizia procera NH Ammonia 3 ASPV Apple stem pitting virus AM Armchair AO Atomic orbitals AM Atrazine-mercapturate B BSMV Barley stripe mosaic virus BiWO Bismuth tungstate 2 6 B Boron k Boltzmann’s constant BSA Bovine serum albumin BTCs Breakthrough curves C CN Carbon nitride 3 4 Cd2+ Cadmium ions CdO Cadmium oxide CdSe Cadmium selenide ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.