ebook img

Quantum Correlations and the Measurement Problem PDF

0.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Correlations and the Measurement Problem

Quantum Correlations 2 and the Measurement Problem 1 0 2 Jeffrey Bub c PhilosophyDepartmentandInstituteforPhysicalScienceandTechnology e D UniversityofMaryland,CollegePark,MD20742,USA 9 2 Abstract ] The transition from classical to quantum mechanics rests on the recognition h that thestructureof informationisnot what wethought itwas: thereareopera- p tional,i.e.,phenomenal,probabilisticcorrelationsthatlieoutsidethepolytopeof - t localcorrelations. Suchcorrelationscannotbesimulatedwithclassicalresources, n whichgenerateclassicalcorrelationsrepresentedbythepointsinasimplex,where a theverticesofthesimplexrepresentjointdeterministicstatesthatarethecommon u causes of thecorrelations. The‘nogo’ hidden variable theoremstell usthatwe q [ can’tshoe-horncorrelationsoutsidethelocalpolytopeintoaclassicalsimplexby supposing that somethinghas beenleftout of thestory. Thereplacement of the 2 classicalsimplexbythequantumconvexsetasthestructurerepresentingproba- v bilisticcorrelationsistheanalogueforquantummechanicsofthereplacementof 1 Newton’sEuclideanspaceandtimebyMinkowskispacetimeinspecialrelativity. 7 Thenonclassical featuresofquantummechanics, includingtheirreducibleinfor- 3 mationlossonmeasurement, aregenericfeaturesofcorrelationsthat lieoutside 6 . thelocalcorrelationpolytope. Thispaperisanelaborationoftheseideas,andits 0 consequences forthemeasurementproblemofquantummechanics. Alargepart 1 ofthedifficultyisremovedbyseeingthattheinconsistencyinreconcilingtheen- 2 tangledstateattheendofaquantummeasurement processwiththedefiniteness 1 ofthemacroscopicpointerreadingandthedefinitenessofthecorrelatedvalueof : v themeasuredmicro-observableisonlyapparentanddependsonastipulationthat i isnot requiredbythestructureofthequantum possibilityspace. Replacingthis X stipulationbyanalternativeconsistentstipulationresolvestheproblem. r a 1 Introduction Whatisquantummechanicsabout?Inthecaseofspecialrelativity,theanswerisclear: special relativity is about the structure of space-time. The replacement of Newton’s Euclideanspaceandtimewithadifferentgeometricstructure,Minkowskispace-time, inwhichspaceandtimearerelativetothestateofmotionofasystem,followedfrom therecognitionofapropertyoflight,that‘thereisneveranyovertakingoflightbylight inemptyspace,’asHermannBondiputsit[6,p. 27],togetherwitharevisedrelativity principle,that‘velocitydoesn’tmatterforphysics’[6,p. 20],i.e.,forelectromagnetic aswellasmechanicalphenomena. 1 A variety of answers have been proposed for quantum mechanics: that quantum mechanics is about energy being quantized in discrete lumps or quanta, or that it is about particles that are wavelike, or that it is about the universe, as we perceive it, continually splitting into countless co-existing quasi-classical universes, with many copies of ourselves, and so on. A more mundane answer is implicit in the theory of quantum information: quantum mechanicsis about probabilistic correlations, i.e., aboutthe structure of information, insofar as a theory of informationis essentially a theoryofprobabilisticcorrelations.Weliveinauniverseinwhichtherearecorrelations thatlieoutsidethepolytopeoflocalcorrelations.Suchcorrelationscannotbesimulated withclassicalresources,whichgenerateclassicalcorrelationsrepresentedbythepoints inasimplex,wheretheverticesofthesimplexrepresentjointdeterministicstatesthat are the commoncausesof the correlations. The replacementof the classical simplex bythequantumconvexsetasthestructurerepresentingprobabilisticcorrelationsisthe analogueforquantummechanicsofthereplacementofNewton’sEuclideanspaceand timebyMinkowskispacetimeinspecialrelativity. Thefollowingdiscussionisanelaborationofthisidea,anditsconsequencesforthe measurementproblemofquantummechanics. 1isanintroductiontoclassical,quan- § tum, andsuperquantumcorrelations,andthedifferencesbetweenthem. 2considers § the question: if operational or phenomenal probabilistic correlations can lie outside thelocalcorrelationpolytopeandhencecannotbesimulatedwithclassicalresources, whatprincipleconstrainsthesecorrelationstotheconvexsetofquantumcorrelations? Whynotsuperquantumcorrelations? 3isadiscussionoftworecentresults,byPusey, § Barrett, and Rudolph[24], and by Colbeck andRenner [13], aboutthe interpretation ofquantumstates. Theissueisframedasthequestionofwhetherquantumstatesare ‘epistemic’or‘ontic.’ Aswe’llsee,thesignificanceofthesenewresultsismoreprop- erly seen in relation to the Bell [2] and Kochen and Specker [20] ‘no go’ theorems aboutpossibleextensionsorcompletionsofquantummechanics,traditionallyformu- latedasthequestionofwhether‘hidden’variablesunderlytheprobabilitydistributions defined by quantum states. 4 proposesa solution to the measurementproblemas it § arisesinthisinformation-theoreticviewofquantummechanics. 2 Correlations Consider the simple case of measurements of two binary-valued observables, x 0,1 with outcomesa 0,1 , performedby Alice in a regionA, andy 0,1∈ w{ith}outcomesb 0,1∈,{perfo}rmedby Bob in a separated region B. Cor∈rel{ation}s ∈ { } areexpressedbyacorrelationarrayofjointprobabiltiesasinTable1. Theprobability p(0000) is to be read as p(a = 0,b = 0x = 0,y = 0), i.e., as a joint conditional | | probability,andtheprobabilityp(0110)istobereadasp(a=0,b=1x=1,y =0), | | etc.(Idropthecommasforeaseofreading;thefirsttwoslotsinp( )beforethe −−|−− conditionalizationsign representthe two possible measurementoutcomesfor Alice | andBob,respectively,andthesecondtwoslotsaftertheconditionalizationsignrepre- sentthetwopossibleobservablesthatAliceandBobchoosetomeasure,respectively.) Therearefourprobabilityconstraints: thesumoftheprobabilitiesineachsquare 2 x 0 1 y 0 p(0000) p(1000) p(0010) p(1010) | | | | p(0100) p(1100) p(0110) p(1110) | | | | 1 p(0001) p(1001) p(0011) p(1011) | | | | p(0101) p(1101) p(0111) p(1111) | | | | Table1:Correlationarray cellofthearrayinTable1is1,sincethesumisoverallpossibleoutcomes,giventhe twoobservablesthataremeasured.Themarginalprobabilityof0forAliceorforBob, foragivenpairofobservables,isobtainedbyaddingtheprobabilitiesintheleftcolumn ofeachcellorthetoprowofeachcell,respectively,andthemarginalprobabilityof1 forAliceorforBob,foragivenpairofobservables,byaddingtheprobabilitiesinthe rightcolumnofeachcellorthebottomrowofeachcell,respectively.Themeasurement outcomesareuncorrelatedifthejointprobabilityisexpressibleasaproductofmarginal orlocalprobabilitiesforAliceandBob;otherwisetheyarecorrelated. Nowconsiderallpossiblecorrelationarraysoftheaboveform. Theyrepresentthe pureandmixedstatesofabipartitesystemwithtwobinary-valuedobservablesforeach subsystem and form a regular convexpolytope with 256 vertices, where the vertices representtheextremaldeterministicarraysorpurestateswithprobabilities0or1only, e.g., the array in Table 2.1 The polytope is the closed convex hull of the vertices, i.e., the smallest closed convex set containing the vertices. There are four possible arrangementsof 0’s and 1’s that add to 1 in each square cell of the correlationarray (i.e.,one1andthree0’s),andfourcells,hence44 = 256vertices. The16probability variablesinthecorrelationarrayareconstrainedbythefourprobabilityconstraints. It followsthatthe256-vertexpolytopeis12-dimensional.2 Ageneralcorrelationarrayis representedbyapointinthispolytope,sotheprobabilitiesinthearraycanbeexpressed (ingeneral,non-uniquely)asconvexcombinationsofthe0,1probabilitiesinextremal correlation arrays (just as the probability of one of two alternatives, 0 or 1, can be representedasapointonalinebetweenthepoints0and1becauseitcanbeexpressed asaconvexcombinationoftheextremalendpoints). ThecorrelationarrayinTable2definesasetofcorrelationsthatallowinstantaneous signalingbetweenAliceandBob. Thinkofthex-valuesanda-valuesasAlice’sinputs and outputs, respectively, and similarly for Bob with respect to the y-values and b- values. So the two Alice-inputs (x = 0 or x = 1) correspond to the two Alice- observables, and the two Bob-inputs (y = 0 or y = 1) correspond to the two Bob- observables, and each observable can take two values, 0 or 1. In Table 2 , Alice’s outputisthesameasBob’sinput.Similarly,Bob’soutputisthesameasAlice’sinput. SoaninputbyAliceorBobisinstantaneouslyrevealedinaremoteoutput. Thereare 1Aregularpolytopeisthemulti-dimensionalanalogueofaregularpolygon,e.g.,anequilateraltriangle, orasquare,orapentagonintwodimensions.Aconvexsetis,roughly,asetsuchthatfromanypointinthe interioritispossibleto‘see’anypointontheboundary. 2ThankstoTonySudburyforclarifyingthis(privatecommunication). 3 240 similar signaling extremaldeterministic correlation arraysin the total set of 256 extremal deterministic correlation arrays. The remaining 16 extremal deterministic correlationarraysareno-signalingarrays. x 0 1 y 0 p(0000)=1 p(1000)=0 p(0010)=0 p(1010)=0 | | | | p(0100)=0 p(1100)=0 p(0110)=1 p(1110)=0 | | | | 1 p(0001)=0 p(1001)=1 p(0011)=0 p(1011)=0 | | | | p(0101)=0 p(1101)=0 p(0111)=0 p(1111)=1 | | | | Table2:Extremalsignalingdeterministiccorrelationarray Theno-signalingprinciplecanbeformulatedasfollows:noinformationshouldbe availableinthemarginalprobabilitiesofoutputsinregionAaboutalternativechoices madebyBobinregionB,i.e.,Alice,inregionAshouldnotbeabletotellwhatBob measuredinregionB,orwhetherBobperformedanymeasurementatall,bylooking atthestatisticsofhermeasurementoutcomes,andconversely.Formally: Xp(a,bx,y) p(ax,y) = p(ax),y 0,1 (1) | ≡ | | ∈{ } b Xp(a,bx,y) p(bx,y) = p(by),x 0,1 (2) | ≡ | | ∈{ } a Herep(a,bx,y)istheprobabilityofobtainingthepairofoutputsa,bforthepairof | inputsx,y.Theprobabilityp(ax,y)isthemarginalprobabilityofobtainingtheoutput | a for x when Bob’s inputis y, and p(bx,y) is the marginalprobability of obtaining | theoutputbfory whenAlice’sinputisx. Theno-signalingprinciplerequiresAlice’s marginalprobabilityp(ax,y)tobeindependentofBob’schoiceofinputinregionB (andindependentofwhe|thertherewasanyinputinregionBatall), i.e.,p(ax,y) = | p(ax), and similarly forBob’smarginalprobabilityp(bx,y) with respectto Alice’s | | inputs:p(bx,y)=p(by). | | Notethattheno-signalingprincipleissimplyaconstraintonthemarginalprobabil- ities,notarelativisticconstraintonthemotionofaphysicalentitythroughspace-time perse—thereisnoreferencetoc,thevelocityoflight. Whatisexcludedisthatsome- thinghappeningherehasanimmediateeffectoverthere. CommunicationbetweenAl- iceandBobinvolvestheexchangeofmessagesencodedasphysicalsignalsthatmove betweenthemthroughspaceatacertainvelocity.Ifthisconstraintwereviolated,then instantaneous(andhencesuperluminal)signalingwouldbepossible. Thejointprobabilitiesinthe16no-signalingdeterministiccorrelationarrayscanall beexpressedasproductsofmarginalorlocalprobabilitiesforAliceandBobseparately. For example, the deterministic correlation array in which the outputs are both 0 for all possible input combinations, as in Table 3, is a no-signaling array and the joint probabilities can be expressed as a product of local probabilities: a marginal Alice- probabilityof1fortheoutput0givenanyinput,andamarginalBob-probabilityof1 4 fortheoutput0givenanyinput. Thisis,ofcourse,notthecaseforthe240signaling deterministiccorrelationarrays. x 0 1 y 0 p(0000)=1 p(1000)=0 p(0010)=1 p(1010)=0 | | | | p(0100)=0 p(1100)=0 p(0110)=0 p(1110)=0 | | | | 1 p(0001)=1 p(1001)=0 p(0011)=1 p(1011)=0 | | | | p(0101)=0 p(1101)=0 p(0111)=0 p(1111)=0 | | | | Table3: Extremalno-signalingdeterministiccorrelationarray NowsupposethecorrelationsareasinTable4.ThesecorrelationsdefineaPopescu- Rohrlichbox(PR-box),ahypotheticaldeviceconsideredbyPopescuandRohrlich[23] tobringoutthedifferencebetweenclassical,quantum,andsuperquantumno-signaling correlations. x 0 1 y 0 p(0000)=1/2 p(1000)=0 p(0010)=1/2 p(1010)=0 | | | | p(0100)=0 p(1100)=1/2 p(0110)=0 p(1110)=1/2 | | | | 1 p(0001)=1/2 p(1001)=0 p(0011)=0 p(1011)=1/2 | | | | p(0101)=0 p(1101)=1/2 p(0111)=1/2 p(1111)=0 | | | | Table4:PR-boxcorrelationarray PR-boxcorrelationscanbedefinedasfollows: a b=x y (3) ⊕ · where isadditionmod2,i.e., ⊕ sameoutputs(i.e.,00or11)iftheinputsare00or01or10 • differentoutputs(i.e.,01or10)iftheinputsare11 • withtheassumptionthatthemarginalprobabilitiesareall1/2toensurenosignaling, so the outputs00 and 11 are obtainedwith equalprobabilitywhen the inputsare not both1,andtheoutputs01and10areobtainedwithequalprobabilitywhentheinputs areboth1. A PR-box functionsin such a way that if Alice inputsa 0 or a 1, her outputis 0 or1withprobability1/2,irrespectiveofBob’sinput,andirrespectiveofwhetherBob inputsanythingatall;similarlyforBob.Therequirementissimplythatwheneverthere areinfacttwoinputs,theinputsandoutputsarecorrelatedaccordingto(3). A PR-boxcanfunctiononlyonce,sotogetthestatistics formanypairsofinputs onehasto use manyPR-boxes. In thisrespect, a PR-boxmimicsa quantumsystem: 5 after a system has responded to a measurement (produced an output for an input), the system is nolongerin the same quantumstate, andone hasto use manysystems preparedinthesamequantumstatetoexhibittheprobabilitiesassociatedwithagiven quantumstate. The 16 verticesdefinedby the local no-signalingdeterministic states are the ver- ticesofa polytope: thepolytopeoflocalcorrelations. Thelocalcorrelationpolytope isincludedinano-signalingnonlocalpolytope,definedbythe16verticesofthelocal polytopetogetherwithanadditional8nonlocalvertices,oneofthesenonlocalvertices representingthe standardPR-box as defined above, and the other seven verticesrep- resentingPR-boxesobtainedfromthestandardPR-boxbylocalreversibleoperations (relabeling the x-inputs, and the a-outputs conditionally on the x-inputs, and the y- inputs,andtheb-outputsconditionallyonthey-inputs). Forexample,thecorrelations inTable5 definea PR-box. Note thatthe16verticesofthelocalpolytopecanallbe obtainedfromthevertexrepresentedbyTable3bysimilarlocalreversibleoperations. Boththe16-vertexlocalpolytopeandthe24-vertexno-signalingnonlocalpolytopeare 8-dimensional: inadditiontothefourprobabilityconstraints(oneforeachcellinthe correlationarray),therearefourno-signalingconstraints.3 x 0 1 y 0 p(0000)=0 p(1000)=1/2 p(0010)=0 p(1010)=1/2 | | | | p(0100)=1/2 p(1100)=0 p(0110)=1/2 p(1110)=0 | | | | 1 p(0001)=0 p(1001)=1/2 p(0011)=1/2 p(1011)=0 | | | | p(0101)=1/2 p(1101)=0 p(0111)=0 p(1111)=1/2 | | | | Table5: LocallytransformedPR-boxcorrelationarray(relativetoTable4) Correlationsrepresentedbypointsinthelocalpolytopecanbesimulatedwithclas- sical resources, which generate classical correlations represented by the points in a simplex, where the vertices represent joint deterministic states (extremal states) that are the common causes of the correlations. Probability distributions over these ex- tremalstates—mixedstates—are representedby pointsin the interioror boundaryof thesimplex. Asimplexisaregularconvexpolytopegeneratedbyn+1verticesthat arenotconfinedtoany(n 1)-dimensionalsubspace,e.g.,atetrahedronasopposedto − asquare.Thelatticeofsubspacesofasimplex(thelatticeofvertices,edges,andfaces) is a Booleanalgebra, with a 1-1correspondencebetween the vertices, corresponding to the atoms of the Boolean algebra, and the facets (the (n 1)-dimensionalfaces), − which correspond to the co-atoms. The classical simplex—in this case a 16-vertex simplex—representsthecorrelationpolytopeofprobabilisticstatesofabipartiteclas- sical system with two binary-valued observables for each subsystem; the associated Booleanalgebrarepresentstheclassicalpossibilitystructure. SupposeAliceandBobareallowedcertainresources. Whatistheoptimalproba- bilitythattheycanperfectlysimulatethecorrelationsofaPR-box? 3Bell’s locality conditions, whichcharacterize thelocalpolytope, aretighter no-signaling constraints: no-signalingconditionalonthevaluesoflocalhiddenvariables. 6 Inunitswherea= 1,b= 1,4 ± ± 00 =p(outputssame00) p(outputsdifferent00) (4) h i | − | so: 1+ 00 p(outputssame00) = h i (5) | 2 1 00 p(outputsdifferent00) = −h i (6) | 2 andsimilarlyforinputpairs01,10,11. ItfollowsthattheprobabilityofsuccessfullysimulatingaPR-boxisgivenby: 1 p(successfulsim) = (p(outputssame00)+p(outputssame01)+ 4 | | p(outputssame10)+p(outputsdifferent11)) (7) | | 1 K 1 = (1+ )= (1+E) (8) 2 4 2 whereK = 00 + 01 + 10 11 is theClauser-Horne-Shimony-Holt(CHSH) h i h i h i−h i correlation. Bell’slocalityargument[2]intheClauser-Horne-Shimony-Holtversion[12]shows thatifAliceandBobarelimitedtoclassicalresources,i.e.,iftheyarerequiredtorepro- ducethecorrelationsonthebasisofsharedrandomnessorcommoncausesestablished beforetheyseparate(afterwhichnocommunicationisallowed),then K 2, i.e., C E 1,sotheoptimalprobabilityofsuccessfullysimulatingaPR-box|is 1|(1≤+1)= 2 2 2 |3.|≤ 4 IfAliceandBobareallowedtobasetheirstrategyonsharedentangledstatespre- paredbeforetheyseparate,thentheTsirelsonboundforquantumcorrelationsrequires that K 2√2,i.e., E 1 ,sotheoptimalprobabilityofsuccessfulsimulation | Q| ≤ | | ≤ √2 limitedbyquantumresourcesis 1(1+ 1 ) .85. 2 √2 ≈ Iusetheterm‘nonlocalbox’torefertoanyno-signalingdevicewithaprobability arraysuchthat,usingthenonlocalbox,itispossibletosuccessfullysimulateaPR-box (extremalnonlocalbox)withaprobabilitygreaterthantheclassicalvalueof3/4. We liveinanonlocalboxworld:apairofqubitsinanentangledquantumstateconstitutes anonlocalboxforcertainpairsofmeasurements. AsPopescuandRohrlichobserve, relativistic causalitydoesnotruleoutsimulatinga PR-boxwith a probabilitygreater than 1(1+ 1 ):therearepossibleworldsdescribedbysuperquantumtheoriesthatal- 2 √2 lownonlocalboxeswithno-signalingcorrelationsstrongerthanquantumcorrelations, in the sense that 1 < E 1. The correlations of a PR-box saturate the CHSH √2 ≤ inequality(E =1),andsorepresentalimitingcaseofno-signalingcorrelations. 4Itisconvenient tochangeunitsheretorelatetheprobability totheusualexpressionfortheClauser- Horne-Shimony-Holtcorrelation, wheretheexpectation valuesareexpressedintermsof±1valuesforx andy(correspondingtotherelevantobservables). Notethat‘outputssame’or‘outputsdifferent’meanthe samethingwhatevertheunits,sotheprobabilitiesp(outputssame|xy)andp(outputsdifferent|xy)takethe samevalueswhatevertheunits,buttheexpectationvaluehxyidependsontheunitsforxandy. 7 PR-box superquantum correlations quantum correlations correlations that can be simulated with L L classical resources Figure1:Schematicrepresentationofpartofthespaceofno-signalingcorrelationsfor a bipartite system with binary inputand output. The vertices L are the deterministic verticesofthelocalno-signalingpolytope. Correlationsinthispolytopecanbesimu- latedwith classicalresources. Thesuperquantumpolytopeisboundedbythe sixteen verticesL of the localpolytopetogetherwith eightPR-boxvertices, which represent thestrongestpossiblenonlocalcorrelationsconsistentwiththeno-signalingprinciple. Thequantumconvexsetisboundedbyacontinuoussetofverticesandisnotapoly- tope. It lies between the 16-vertex local polytope and the 24-vertex superquantum no-signalingnonlocalpolytope. Tuesday, December 25, 12 Fortwobinary-valuedobservablesofabipartitequantumsystem,thecorrelations form a spherical convexset that is not a polytope, with a continuousset of extremal pointsbetweenthe16-vertexlocalcorrelationpolytopecharacterizedbyBell’sinequal- ities (or the CHSH inequalities) and the 24-vertex no-signaling nonlocal polytope, which is itself included in the 256-vertex nonlocal polytope with 240 vertices that represent deterministic signaling states. By Bell’s theorem, only correlations in the 16-vertexlocalpolytopecanbeclassicallysimulatedbypointsinasimplex,wherethe verticesofthesimplexrepresentjointdeterministicstatesthatarethecommoncauses ofthecorrelations.SeeFig. 1. Asimplexhastheratherspecialpropertythatamixedstate,representedbyapoint intheinteriorofthesimplex,canbeexpresseduniquelyasamixture(convexcombi- nation) of extremal or pure states, the vertices of the simplex. No other polytope or convexset hasthis feature. So in the class of no-signalingtheories, classical(= sim- plex)theoriesare ratherspecial. If there is no uniquedecompositionof mixed states intodeterministicpurestatesfortheoperationalorphenomenalprobabilities,asisthe caseforthelocal16-vertexpolytope,theneitherthereissomerestrictiononaccessto the fullinformationencodedin the purestates, i.e., thereis somethingleft outof the story (which could, in principle, be added to complete the story as a simplex theory in which the vertices represent the common causes of correlations), or the correla- tions are outside the local polytope and there is no theoretical account that provides an explanation of correlations in terms of deterministic pure states without violating the no-signaling principle: any no-signaling explanation of correlations will have to 8 includeindeterministicstateslikePR-boxstates. To illustrate this non-uniqueness for the local correlation polytope, which is not a simplex, denotea deterministic state by the sequence ; , where the first two −− −− slotsdenotethetwopossibleAlice-outputsforthetwopossibleAlice-inputs,andthe secondtwoslotsafterthesemi-colondenotethetwopossibleBob-outputsforthetwo possibleBob-inputs.Theequal-weightmixture,m1,ofthefourdeterministicstates: 00;00 11;11 00;11 11;00 isequivalenttotheequal-weightmixture,m2,ofthefourdifferentdeterministicstates: 01;01 10;10 01;10 10;01 x 0 1 y 0 p(0000)=1/4 p(1000)=1/4 p(0010)=1/4 p(1010)=1/4 | | | | p(0100)=1/4 p(1100)=1/4 p(0110)=1/4 p(1110)=1/4 | | | | 1 p(0001)=1/4 p(1001)=1/4 p(0011)=1/4 p(1011)=1/4 | | | | p(0101)=1/4 p(1101)=1/4 p(0111)=1/4 p(1111)=1/4 | | | | Table6:Correlationarrayassociatedwiththetwoequivalentmixturesm1andm2 Bothmixturescorrespondtothesamepointinthelocalcorrelationpolytope,rep- resentedbythearrayinTable6. Foreachmixture,theprobabilitiesofthefourpossible Alice-Boboutputs,00,01,10,11,areequalforanyAlice-inputandBob-input. Also, for each mixture, the marginal probabilities of Alice’s two possible outputs, 0 or 1, areboth1/2,foranyinput,andsimilarlyforBob. Sothetwomixturesareequivalent for Alice and for Bob, separately, assuming they each have access to only one input andassociatedoutputatatime,andtheyarealsoequivalentforAliceandBobjointly, assumingtheyhaveaccesstoonlyonepairofinputsandassociatedoutputsatatime. Themixturescanonlybedistinguishedinatheorythatassumesaccesstobothinputs and outputs at the same time, for Alice and for Bob. This is the case in a theory in which the 16 deterministic states are representedby the verticesof a simplex, where therepresentationofmixtures, representedby pointsin thesimplex, in termsofpure states,representedbythevertices,isunique. A16-vertexsimplexisa15-dimensional 9 polytope: there is only one probabilityconstraint, that the sum of the sixteen proba- bilities p( ) should sum to 1. The (operational)local correlation polytope −−|−− characterizes a situation where access to the information encoded in the simplex is restricted. Iftheoperationalorphenomenalcorrelationslieoutsidethelocalcorrelationpoly- tope,therethereisnotheoreticalexplanationofthecorrelationsintermsofasimplex theory, if we demand no violation of the no-signalingprinciple. Any theoretical ex- planationofsuchcorrelationswillhavetoinvolveindeterministicpurestates,suchas PR-boxes,andthedecompositionofmixedstatesintopurestateswillbenon-unique. For such theories, there can be no general cloning procedure capable of copying an arbitraryextremalstate withoutviolatingthe no-signalingprinciple,andso therecan benomeasurementinthenon-disturbingsense availableinclassicaltheories,where itisinprinciplepossible, viameasurement,toextractsufficientinformationaboutan extremal state to produce a copy of the state without irreversibly changing the state. Foranonlocalboxtheory,thereisanecessaryinformationlossonmeasurement. Toseethis,consideraPR-boxandsupposethereissomeparameterλthatBobis able to measure, and that Bob could somehow extract sufficient information via this measurement to know the outputs of both possible inputs to his part of the PR-box. SupposeBob’sinformationis that the outputvaluesforhis two possible inputsare j andk. Consider a reference frame in which Alice’s input occurs before Bob’s measure- mentofλ. Ifj = k, thenBobcaninferthatAlice’sinputwas0, becauseotherwise, tosatisfythePR-boxconstraint(3),ifAlice’sinputwas1,Alice’soutputwouldhave to be the same as Bob’s outputvaluefor hisinput0, butdifferentfromBob’s output valueforhisinput1,whichisimpossibleifBob’soutputvaluesforhistwoinputsare thesame. Similarly,ifj =k,thenBobcaninferthatAlice’sinputwas1,becauseoth- 6 erwise,ifAlice’sinputwas0,Bob’soutputvaluesforhistwoinputswouldhavetobe thesameasAlice’soutputforherinput0,whichwouldrequireBob’soutputvaluesto bethesame. Sotheno-signalingprincipleisviolated:Alicecansignalinstantaneously toBob. Allen Stairs has pointed out5 that this conclusion follows only if Alice’s output doesnotdependonBob’sinput,e.g.,asinTable7forthecasej =kandasinTable8 forthecasej = k. ButifAlice’soutputdependsonBob’sinput,thenBobcansignal 6 instantaneouslytoAlice,whichagaininvolvesaviolationoftheno-signalingprinciple. Now consider a reference frame in which Bob measures λ before Alice’s input. Then there is a constraint on Alice’s choice of input: her input is 0 if Bob’s output valuesforhisinputsarethesame,andherinputis1ifBob’soutputvaluesforhisinputs aredifferent. Again(Stairs’clarification),thisfollowsonlyifAlice’soutputdoesnot depend on Bob’s input. But if Alice’s output is nonlocally contextual and depends on Bob’s input, then there is a violation of the no-signaling principle rather than a constraintonAlice’sfreedomtochooseherinput.Soeitherthereisaviolationof‘free choice,’i.e.,whatissometimescalled‘superdeterminism’—Alice’sinputchoiceisnot freebutisisdetermined(or,moregenerally,constrained)bythevalueofλ—orthere 5Privatecommunication. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.