Quantum Computation and Quantum Information 10th Anniversary Edition Michael A. Nielsen & Isaac L. Chuang CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore, Sa˜oPaulo,Delhi,Dubai,Tokyo,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107002173 C M.NielsenandI.Chuang2010 ! Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2000 Reprinted2002,2003,2004,2007,2009 10thAnniversaryeditionpublished2010 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcatalogrecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-00217-3Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredtoin thispublication,anddoesnotguaranteethatanycontentonsuchwebsitesis, orwillremain,accurateorappropriate. To our parents, and our teachers Contents IntroductiontotheTenthAnniversaryEdition pagexvii AfterwordtotheTenthAnniversaryEdition xix Preface xxi Acknowledgements xxvii Nomenclatureandnotation xxix PartI Fundamentalconcepts 1 1 Introductionandoverview 1 1.1 Globalperspectives 1 1.1.1 Historyofquantumcomputationandquantum information 2 1.1.2 Futuredirections 12 1.2 Quantumbits 13 1.2.1 Multiplequbits 16 1.3 Quantumcomputation 17 1.3.1 Singlequbitgates 17 1.3.2 Multiplequbitgates 20 1.3.3 Measurementsinbasesotherthanthecomputationalbasis 22 1.3.4 Quantumcircuits 22 1.3.5 Qubitcopyingcircuit? 24 1.3.6 Example:Bellstates 25 1.3.7 Example:quantumteleportation 26 1.4 Quantumalgorithms 28 1.4.1 Classicalcomputationsonaquantumcomputer 29 1.4.2 Quantumparallelism 30 1.4.3 Deutsch’salgorithm 32 1.4.4 TheDeutsch–Jozsaalgorithm 34 1.4.5 Quantumalgorithmssummarized 36 1.5 Experimentalquantuminformationprocessing 42 1.5.1 TheStern–Gerlachexperiment 43 1.5.2 Prospectsforpracticalquantuminformationprocessing 46 1.6 Quantuminformation 50 1.6.1 Quantuminformationtheory:exampleproblems 52 1.6.2 Quantuminformationinawidercontext 58 x Contents 2 Introductiontoquantummechanics 60 2.1 Linearalgebra 61 2.1.1 Basesandlinearindependence 62 2.1.2 Linearoperatorsandmatrices 63 2.1.3 ThePaulimatrices 65 2.1.4 Innerproducts 65 2.1.5 Eigenvectorsandeigenvalues 68 2.1.6 AdjointsandHermitianoperators 69 2.1.7 Tensorproducts 71 2.1.8 Operatorfunctions 75 2.1.9 Thecommutatorandanti-commutator 76 2.1.10 Thepolarandsingularvaluedecompositions 78 2.2 Thepostulatesofquantummechanics 80 2.2.1 Statespace 80 2.2.2 Evolution 81 2.2.3 Quantummeasurement 84 2.2.4 Distinguishingquantumstates 86 2.2.5 Projectivemeasurements 87 2.2.6 POVMmeasurements 90 2.2.7 Phase 93 2.2.8 Compositesystems 93 2.2.9 Quantummechanics:aglobalview 96 2.3 Application:superdensecoding 97 2.4 Thedensityoperator 98 2.4.1 Ensemblesofquantumstates 99 2.4.2 Generalpropertiesofthedensityoperator 101 2.4.3 Thereduceddensityoperator 105 2.5 TheSchmidtdecompositionandpurifications 109 2.6 EPRandtheBellinequality 111 3 Introductiontocomputerscience 120 3.1 Modelsforcomputation 122 3.1.1 Turingmachines 122 3.1.2 Circuits 129 3.2 Theanalysisofcomputationalproblems 135 3.2.1 Howtoquantifycomputationalresources 136 3.2.2 Computationalcomplexity 138 3.2.3 DecisionproblemsandthecomplexityclassesPandNP 141 3.2.4 Aplethoraofcomplexityclasses 150 3.2.5 Energyandcomputation 153 3.3 Perspectivesoncomputerscience 161 PartII Quantumcomputation 171 4 Quantumcircuits 171 4.1 Quantumalgorithms 172 4.2 Singlequbitoperations 174 Contents xi 4.3 Controlledoperations 177 4.4 Measurement 185 4.5 Universalquantumgates 188 4.5.1 Two-levelunitarygatesareuniversal 189 4.5.2 SinglequbitandCNOTgatesareuniversal 191 4.5.3 Adiscretesetofuniversaloperations 194 4.5.4 Approximatingarbitraryunitarygatesisgenericallyhard 198 4.5.5 Quantumcomputationalcomplexity 200 4.6 Summaryofthequantumcircuitmodelofcomputation 202 4.7 Simulationofquantumsystems 204 4.7.1 Simulationinaction 204 4.7.2 Thequantumsimulationalgorithm 206 4.7.3 Anillustrativeexample 209 4.7.4 Perspectivesonquantumsimulation 211 5 ThequantumFouriertransformanditsapplications 216 5.1 ThequantumFouriertransform 217 5.2 Phaseestimation 221 5.2.1 Performanceandrequirements 223 5.3 Applications:order-findingandfactoring 226 5.3.1 Application:order-finding 226 5.3.2 Application:factoring 232 5.4 GeneralapplicationsofthequantumFourier transform 234 5.4.1 Period-finding 236 5.4.2 Discretelogarithms 238 5.4.3 Thehiddensubgroupproblem 240 5.4.4 Otherquantumalgorithms? 242 6 Quantumsearchalgorithms 248 6.1 Thequantumsearchalgorithm 248 6.1.1 Theoracle 248 6.1.2 Theprocedure 250 6.1.3 Geometricvisualization 252 6.1.4 Performance 253 6.2 Quantumsearchasaquantumsimulation 255 6.3 Quantumcounting 261 6.4 SpeedingupthesolutionofNP-completeproblems 263 6.5 Quantumsearchofanunstructureddatabase 265 6.6 Optimalityofthesearchalgorithm 269 6.7 Blackboxalgorithmlimits 271 7 Quantumcomputers:physicalrealization 277 7.1 Guidingprinciples 277 7.2 Conditionsforquantumcomputation 279 7.2.1 Representationofquantuminformation 279 7.2.2 Performanceofunitarytransformations 281 xii Contents 7.2.3 Preparationoffiducialinitialstates 281 7.2.4 Measurementofoutputresult 282 7.3 Harmonicoscillatorquantumcomputer 283 7.3.1 Physicalapparatus 283 7.3.2 TheHamiltonian 284 7.3.3 Quantumcomputation 286 7.3.4 Drawbacks 286 7.4 Opticalphotonquantumcomputer 287 7.4.1 Physicalapparatus 287 7.4.2 Quantumcomputation 290 7.4.3 Drawbacks 296 7.5 Opticalcavityquantumelectrodynamics 297 7.5.1 Physicalapparatus 298 7.5.2 TheHamiltonian 300 7.5.3 Single-photonsingle-atomabsorptionand refraction 303 7.5.4 Quantumcomputation 306 7.6 Iontraps 309 7.6.1 Physicalapparatus 309 7.6.2 TheHamiltonian 317 7.6.3 Quantumcomputation 319 7.6.4 Experiment 321 7.7 Nuclearmagneticresonance 324 7.7.1 Physicalapparatus 325 7.7.2 TheHamiltonian 326 7.7.3 Quantumcomputation 331 7.7.4 Experiment 336 7.8 Otherimplementationschemes 343 PartIII Quantuminformation 353 8 Quantumnoiseandquantumoperations 353 8.1 ClassicalnoiseandMarkovprocesses 354 8.2 Quantumoperations 356 8.2.1 Overview 356 8.2.2 Environmentsandquantumoperations 357 8.2.3 Operator-sumrepresentation 360 8.2.4 Axiomaticapproachtoquantumoperations 366 8.3 Examplesofquantumnoiseandquantumoperations 373 8.3.1 Traceandpartialtrace 374 8.3.2 Geometricpictureofsinglequbitquantum operations 374 8.3.3 Bitflipandphaseflipchannels 376 8.3.4 Depolarizingchannel 378 8.3.5 Amplitudedamping 380 8.3.6 Phasedamping 383 Contents xiii 8.4 Applicationsofquantumoperations 386 8.4.1 Masterequations 386 8.4.2 Quantumprocesstomography 389 8.5 Limitationsofthequantumoperationsformalism 394 9 Distancemeasuresforquantuminformation 399 9.1 Distancemeasuresforclassicalinformation 399 9.2 Howclosearetwoquantumstates? 403 9.2.1 Tracedistance 403 9.2.2 Fidelity 409 9.2.3 Relationshipsbetweendistancemeasures 415 9.3 Howwelldoesaquantumchannelpreserveinformation? 416 10 Quantumerror-correction 425 10.1 Introduction 426 10.1.1 Thethreequbitbitflipcode 427 10.1.2 Threequbitphaseflipcode 430 10.2 TheShorcode 432 10.3 Theoryofquantumerror-correction 435 10.3.1 Discretizationoftheerrors 438 10.3.2 Independenterrormodels 441 10.3.3 Degeneratecodes 444 10.3.4 ThequantumHammingbound 444 10.4 Constructingquantumcodes 445 10.4.1 Classicallinearcodes 445 10.4.2 Calderbank–Shor–Steanecodes 450 10.5 Stabilizercodes 453 10.5.1 Thestabilizerformalism 454 10.5.2 Unitarygatesandthestabilizerformalism 459 10.5.3 Measurementinthestabilizerformalism 463 10.5.4 TheGottesman–Knilltheorem 464 10.5.5 Stabilizercodeconstructions 464 10.5.6 Examples 467 10.5.7 Standardformforastabilizercode 470 10.5.8 Quantumcircuitsforencoding,decoding,and correction 472 10.6 Fault-tolerantquantumcomputation 474 10.6.1 Fault-tolerance:thebigpicture 475 10.6.2 Fault-tolerantquantumlogic 482 10.6.3 Fault-tolerantmeasurement 489 10.6.4 Elementsofresilientquantumcomputation 493 11 Entropyandinformation 500 11.1 Shannonentropy 500 11.2 Basicpropertiesofentropy 502 11.2.1 Thebinaryentropy 502 11.2.2 Therelativeentropy 504 xiv Contents 11.2.3 Conditionalentropyandmutualinformation 505 11.2.4 Thedataprocessinginequality 509 11.3 VonNeumannentropy 510 11.3.1 Quantumrelativeentropy 511 11.3.2 Basicpropertiesofentropy 513 11.3.3 Measurementsandentropy 514 11.3.4 Subadditivity 515 11.3.5 Concavityoftheentropy 516 11.3.6 Theentropyofamixtureofquantumstates 518 11.4 Strongsubadditivity 519 11.4.1 Proofofstrongsubadditivity 519 11.4.2 Strongsubadditivity:elementaryapplications 522 12 Quantuminformationtheory 528 12.1 Distinguishingquantumstatesandtheaccessibleinformation 529 12.1.1 TheHolevobound 531 12.1.2 ExampleapplicationsoftheHolevobound 534 12.2 Datacompression 536 12.2.1 Shannon’snoiselesschannelcodingtheorem 537 12.2.2 Schumacher’squantumnoiselesschannelcodingtheorem 542 12.3 Classicalinformationovernoisyquantumchannels 546 12.3.1 Communicationovernoisyclassicalchannels 548 12.3.2 Communicationovernoisyquantumchannels 554 12.4 Quantuminformationovernoisyquantumchannels 561 12.4.1 EntropyexchangeandthequantumFanoinequality 561 12.4.2 Thequantumdataprocessinginequality 564 12.4.3 QuantumSingletonbound 568 12.4.4 Quantumerror-correction,refrigerationandMaxwell’sdemon 569 12.5 Entanglementasaphysicalresource 571 12.5.1 Transformingbi-partitepurestateentanglement 573 12.5.2 Entanglementdistillationanddilution 578 12.5.3 Entanglementdistillationandquantumerror-correction 580 12.6 Quantumcryptography 582 12.6.1 Privatekeycryptography 582 12.6.2 Privacyamplificationandinformationreconciliation 584 12.6.3 Quantumkeydistribution 586 12.6.4 Privacyandcoherentinformation 592 12.6.5 Thesecurityofquantumkeydistribution 593 Appendices 608 Appendix1: Notesonbasicprobabilitytheory 608 Appendix2: Grouptheory 610 A2.1 Basicdefinitions 610 A2.1.1 Generators 611 A2.1.2 Cyclicgroups 611 A2.1.3 Cosets 612