Quantum coherence ofHard-Core-Bosons andFermions : Extended, GlassyandMott Phases Ana Maria Rey1,2, Indubala I. Satija2,3 and Charles W. Clark2 1 InstituteforTheoretical Atomic, Molecular andOptical Physics, Cambridge, MA,02138,USA 2 National Institute of Standards and Technology, Gaithersburg MD, 20899, USA and 3 Dept. of Phys., George Mason U., Fairfax, VA, 22030,USA (Dated:February6,2008) 6 WeuseHanbury-Brown-Twissinterferometry(HBTI)tostudyvariousquantumphasesofhardcorebosons 0 (HCBs) and ideal fermions confined in a one-dimensional quasi-periodic (QP) potential. For HCBs, the QP 0 potentialinducesacascadeofMott-likeband-insulatorphasesintheextendedregime,inadditiontotheMott 2 insulator,Boseglass,andsuperfluidphases.Atcriticalfillingfactors,theappearanceoftheseinsulatingphases n isheraldedbyapeaktodiptransitionintheinterferogram, whichreflectsthefermionicaspectofHCBs. On a theotherhand,idealfermionsintheextendedphasedisplayvariouscomplexitiesofincommensuratestructures J suchasdevil’sstaircasesandArnoldtongues. Inthelocalizedphase,theHCBandthefermioncorrelationsare 6 identicalexceptforthesignofthepeaks. Finally,wedemonstratethatHBTIprovidesaneffectivemethodto 1 distinguishMottandglassyphases. ] r e Recent developments in the manipulations of ultra-cold experimentalobservation. Furthermore,we findthatQPdis- h atoms in optical lattices have opened new possibilities for ordercanbeexploitedtodistinguishMottfromglassyphases. t o exploringthe richness and complexityof strongly-correlated Four-point correlations can be experimentally probed by t. systems. A particulartopicofcontinuoustheoreticalinterest Hanbury-Brown-Twiss interferometry (HBTI) [10] which a incondensedmatterphysicshasbeenthedifferentphasesin- measures the intrinsic quantum noise in intensity measure- m ducedbytheinterplaybetweendisorderandinteractions[1,2]. ments, commonly refereed to as shot noise or noise corre- d- Incoldatomicgasesdisordercanbeintroducedinacontrolled lations. HBTI is emerging as one of the most important n mannereitherbyplacingaspecklepatternonthemainlattice toolstoprovideinformationbeyondthatofferedbystandard o orbyimposingaquasiperiodic(QP)sinusoidalmodulationon momentum-distribution based characterization of phase co- c theoriginallatticebyusinganadditionalweakerlatticewith herence. The latter is obtained from images of the density [ the desired wavelength ratio [3]. Furthermore, by changing distributionoftheatomicsampleafteritsreleasefromthecon- 1 the depth of the optical potential it is experimentally possi- finingpotential.HBTIisperformedbymeasuringthedensity- v bletocontroltheeffectivedimensionalityaswellastheratio density correlations in such images [11, 12]. Sharp peaks 7 between atomic kinetic and interaction energy in these sys- (dips) in these correlations reflect bunching (anti-bunching) 0 3 tems. All these attributes have made cold atomic systems a of bosons (fermions), characterize the underlying statistics, 1 unique new laboratory to test many established results, ex- and reveal information about the spatial order in the lattice 0 plore new phenomenaunderlying disordered systems and to [11,13]. 6 confrontopenquestions[4,5]. In our study we find that the QP potential induces in the 0 / In this paper, we use two and four point correlation func- HBTIpatternanhierarchicalsetofpeaksappearingatthere- t a tionstocompareandcontrastthedifferentquantumphasesin ciprocallatticevectorsofbothlatticeswithcompetingperiod- m a gas of one dimensional(1D)hard core bosons (HCBs) and icities. WeusethesepeakstogetherwiththefirstorderBragg - fermions subject to a QP potential. In an HCB gas [6], the peaksinthemomentumdistributiontoprovideadetailedchar- d repulsiveinteractionsbetweenbosonsmimicthePauliexclu- acterizationofthedifferentmany-bodyphases. Threecharac- n o sionprinciple,andasaresultHCBsresembleinmanyrespects teristic phases are known in disordered HCB systems [14]: c a system of non-interacting fermions. A 1D HCB gas in a i)theincompressibleMottInsulator(MI)phase,ii)thesuper- v: periodic optical lattice has just recently been experimentally fluidphase,andiii)theinsulatingbutcompressibleBose-glass i realized [7]. A system of non-interactingfermionsmightbe (BG) phase. Here we also find a number of Mott-like band X realized experimentally by reducing interatomic interactions insulator phases. These phases correspond to the filling of ar viaFeshbachresonances[8]. Herewetreatthecaseofatoms thesub-bandsofafragmentedenergyspectrumthatemerges confined by a periodic lattice, with an additional QP poten- fromtheQPsuperfluidphase. Transitionstothesephasesare tialintroducedtoaddpseudo-randomdisorder. AQPsystem signaledbyadecreaseintheintensitiesofthefirstandsecond is in between periodic and random systems and is known to ordercoherentpeaks.Theyarefoundtobefollowedbyapeak exhibit localization transitions at a finite depth of the addi- to dip transition in the HBTI pattern when an emptyband is tionallattice[9]. Hereweshowthattheinterplaybetweenthe populatedwithfewatoms. effects of disorder, interactions and quantum statistics leads IdealfermionsinthelocalizedMIandglassyphasesexhibit to new quantumphases, fractalstructuressuch as the devil’s first- and second-order interference patterns similar to the staircase, and fragmented Fermi distribution functions. Our onesofHCBs,exceptforadifferentsignofthepeaks. How- studiesrevealtheseeffectsaremanifestedinfirst-andsecond- ever,intheextendedphase,fermionsandHCBsbehavequite order interferometry, which makes them accessible to direct differently,withfermioninterferencepatternsdisplayingvari- 2 ouscomplexitiesofincommensuratestructures.Whenplotted Inthisletterwetreatthecaseofσ =(√5 1)/2.Innumer- − asafunctionofthefillingfactor,theirquasi-momentumdistri- icalstudies, σ isapproximatedbytheratio oftwo Fibonacci butiondisplaysanArnoldtongue-likestructure;theintensity numbers F /F , (F = F = 1,F = F + F ), M−1 M 1 0 i+1 i i−1 ofHBTIpeaksexhibitsastep-likepatternwhichresemblesa which describe the best rational approximant to σ. For this devil’s staircase [15]. Thus, our study points out the poten- rational approximation the unit cell has length F and the M tial of ultra-cold gases to provide laboratory demonstrations single-particle spectrum consists of F bands and F 1 M M − ofnon-linearandmulti-fractalphenomena. gaps. Thegapsoccurathalf-valuesofreciprocallatticevec- In a typical experiment, atoms are released by turning off tors, which we label by the Bloch index Q = nσ(mod n ± theexternalpotentials.Theatomiccloudexpands,andispho- 1)2π/a, with n an integer and Q a ( π,π). The size of n ∈ − tographedafter it enters the ballistic regime. Assuming that the gaps decreases as n increases. In this paper, we present the atoms are noninteracting from the time of release, prop- ourresultsforσ =55/89. erties of the initial state can be inferred from the spatial im- Ingeneralthephasediagramofinteractingbosonswithdis- ages [11, 13, 16]: the column density distribution image re- orderis rather complicated. Howeverthe analysis simplifies flectstheinitialquasi-momentumdistribution,n(Q),andthe in the HCB limit, because multiple site occupanciesare for- densityfluctuations,namelythenoisecorrelations,reflectthe bidden and the system is thus ”fermionized”. The ground quasi-momentumfluctuations,∆(Q,Q′), state energy of an N-particle HCB system is the sum of the first N single-particle eigenstates, as is the case for ideal fermions. This is why the localization transition occurs at 1 nˆ(Q) = LXeiQa(j−k)Ψˆ†jΨˆk, (1) λc = J in HCB systems. Two-point and four-point corre- j,k lationfunctionsfor HCBs canbe expressedas a To¨plitz-like ∆(Q,Q′) nˆ(Q)nˆ(Q′) nˆ(Q) nˆ(Q′) . (2) determinant involving two-point free fermionic propagators: ≡ h i−h ih i g = N−1ψ∗(n)ψ(n). However, in contrast to the ideal lm Pn=0 l m In Eq. (2) we have assumed that both, Q,Q′ lie inside the fermion case where a direct application of Wick’s theorem first Brillouin zone. In this paper we focus on the quantity can be used to express any correlation function in terms of ∆(Q,0) ∆(Q). L isthe numberoflattice sites anda the g , for HCBs the calculations are more elaborate because lm latticecon≡stant. Ψˆ isabosonicorfermionicannihilatorop- theyrequiretheevaluationofmultipledeterminants[13,17]. j erator at the site j. The low energy physics of a 1D gas of stronglycorrelatedbosonsinan opticallattice modulatedby 1.2 aQPpotentialiswelldescribedbytheHamiltonian: Ν=0.3 Ν=1 Ν=0.7 1 H(HCB) =−JX(ˆb†jˆbj+1+ˆb†j+1ˆbj)+XVjnˆj, (3) HLnQ00..68 j j 0.4 where ˆbj is the annihilation operator at the lattice site j; it -Π -Π(cid:144)2 0 Π(cid:144)2 Π Qa satisfiesbosoniccommutationrelations,plustheon-sitecon- 0.1 ditionˆb2 = ˆb†2 = 0whichsuppressesmultipleoccupancies. 0.08 Ν=0.3 j j 0.06 Ν=1 HereJ isthehoppingenergybetweenadjacentsites,andwe 0.04 analytic haveintroducedVj =2λcos(2πσj)todescribetheadditional DHLQ 0.02 QPpotential. Theparameterλisproportionaltotheintensity 0 of the lasers used to create the QP lattice [3]. Note that the -0.02 primaryopticallatticedefinesthetight-bindingcondition,and -Π -Π(cid:144)2 0 Π(cid:144)2 Π Qa theQPpotentialiscreatedbyasecondaryopticallattice.Ideal fermionsaredescribedbythesameHamiltonian,inwhichthe FIG.1:(coloronline)CorrelationsofHCBsintheglassyphase(λ= HCBoperatorsarereplacedbyfermionoperators. 2J)Top: Momentumdistribution. Bottom: noisecorrelations. The For a single atom, the eigenfunctions at site j, ψ(n) and centralpeakatQ=0istruncatedtohighlighttheQPpeaks. j eigenenergiesE(n) oftheHamiltonianinEq.(3)satisfy: We nowdiscussthe phasediagramsforHCBandfermion J(ψ(n) +ψ(n))+2λcos(2πσj)ψ(n) =E(n)ψ(n). (4) systemes,startingwiththelocalizedphase. Inthelimitλ − j+1 j−1 j j λ ,thesingleparticlewavefunctionsarelocalizedatindivi≫d- c ThisistheHarperequation,aparadigmin1DQPsystems[9]. uallatticesites,ψ(n) δ(j l )andE(n) 2λcos(2πσl ), j → − n → n Forirrationalσ,themodelexhibitsatransitionfromextended wherethelocalizationcenterl issuchthatcos(2πσl ) < n n−1 tolocalizedstatesatλ = J. Belowcriticality,allstatesare cos(2πσl ). In this limit the determinants involved in the c n extendedBloch-likestatescharacteristicof a periodicpoten- evaluationofHCBcorrelationsbecometrivialandananalytic tial. Above criticality, all states are exponentially localized descriptionis possible. The momentumdistributioninterfer- andthespectrumispoint-like. Atcriticalitythespectrumisa encepatternflattensoutforbothHCBsandfermions,nˆ(Q)= Cantorset,andthegapsformadevil’sstaircase. ν with ν = N/L the filling factor. The noise correlations 3 wsimheprleifsy=to0∆f(oQr)H=CBνsδQan,0d−s2=ν(11L−fso)r+fer(m−L1i2o)sns(cid:12)(cid:12).PAlpepiaroQxligmll(cid:12)(cid:12)a2t-, 100..8800..66ΝΝ 00..44 00..22 ing the sum by an integral, it is possible to show that ∆(Q) is nonzero only at the reciprocal lattice vectors, Q , of the n 4 combinedsuperlattice.Atthesepoints, nHQL 2 ∆(Qn)≡∆n ≈νδn,0−2ν(1L−s)+(−1)s(πsinn)22[πνn]. (5) -Π --ΠΠ(cid:144)(cid:144)22 Q00a ΠΠ(cid:144)(cid:144)22 ΠΠ0 1 00..88 ΝΝ 00..66 Eq. (5)illuminatesvariousimportantaspectsofHBTIinthe 00..44 00..22 glassyphase: i)theexplicitdependenceofnoisecorrelations onquantumstatistics, sincethebosonpeaksarepositiveand 1 0 DHQL thecorrespondingfermionpeaksarenegative(exceptforthe -1 -2 autocorrelationpeak∆ ); ii)thepotentialofHBTIasanex- perimentalspectroscopy0tool,sincetheintensityofthen=1 -Π --ΠΠ(cid:144)(cid:144)22 Q00a ΠΠ(cid:144)(cid:144)22 peakisdirectlyrelatedtothegroundstateenergyofthemany- body system, ∆1 = PNk=−01cos(2πnσlk) = E/(L2λ); iii) FIG.2: (coloronline)HCBsinthesuperfluidphase,λ = 0.5J,top: the capability of noise-correlationsto clearly distinguish be- Momentumdistributionandbottom:noisecorrelationswherethein- tween BG and MI phases, since in the Mott phase, ν = 1, tensitiesofthecentralpeaksarescaledbyafactorof1/10toshow thesatellitedips. thewholehierarchicalsetofQPpeaksdisappears;iv)theuni- versal properties of the peaks whose intensities approach an asymptotic value independentlyof the underlyingcommuta- 0.2 tionrelations(exceptforthe∆ peakwhichisalwayslarger 0 for HCBs). This is a unique feature of the BG phase, as in 0 theextendedphasefermionicdipsareweakerthanthecorre- -0.2 0.15 spondingbosonicpeaks(seebelow). LQ 0.1 Fig.1 shows the momentum distribution, n(Q) and noise DH-0.4 J1 0.05 0 correlations, ∆(Q), in the localized phase. Both n(Q) and -0.05 -0.6 0 0.2 0.4 0.6 0.8 1 ∆(Q) were computednumericallyfor finite λ usingthe the- Ν Ν=0.3 Ν=0.6 Ν=Σ oretical framework discussed in Refs. [13, 17]. It should 0 Π(cid:144)2 Π 3Π(cid:144)2 2Π be noted that even though the analytic results were derived Qa for λ limit, they provide a fair description of the nu- → ∞ mericalresultsforfiniteλ. Themaindifferencebetweenthe FIG. 3: (color online) HCBs noise correlation for λ = 0.5J. In λ=2J HBTIpatternandtheanalyticsolutionisthenegative theinsetweplotthevisibilityforthedominantpeak(seetext)asa backgroundwhichislargeratlowquasi-momenta.Theback- functionofν. groundreflectsthefactthatthesingleparticlelocalizedwave functionshavefinitelocalizationlengthξ = 1/log(λ). This by satellite dips, immersed in a negative background. The also gives rise to the finite width in the momentumdistribu- later reflects the longrangecoherencein the extendedphase tion,whichisproportionaltoξ. Asshowninthefigure,QP- asdiscussedinRef.[13]. Itshouldbenotedthat,incontrastto induced localization may lead to Friedel oscillations [18] in glassyphase,fewQPrelatedpeaksarevisible. themomentumdistribution. Theseoscillationsareduetothe Astrikingaspectofthisphaseisthecascadeoflobes(seen two-folddegeneracyoftheeigenstatesandcanbeunderstood in the Fig. 2) describing a series of transitions to insulat- in the strongly disordered limit by taking the eigenfunctions to be a superposition of the two degenerate wave functions: ing phases. These transitions occur at filling factors νc(n) = onelocalizedatlkandtheotheratL−lk. Foranoddnumber nσ(mod1)andν¯c(n) = 1−nσ(mod1),whichcorrespondto ofatoms,thisleadston(Q)=1+ 1 cos(2Qal ). thefillingsatwhichthevarioussub-bandsunderlyingtheQP L N−1 In the extended phase two-point fermion correlations g spectrumarecompletelyfilled. Atthesecriticalfillings,both lm arelong-range,theTo¨plitz-likedeterminantsarecomplicated, first and second order correlations depict a reduction in the and we have found an analytical analysis to be difficult. In centralpeakanddipintensitiesandalsothedisappearanceof this phase our numerically obtained results are summarized theQPinducedpeaksas shownin Fig. 2. Explicitcomputa- in Figs. 2 and 3. In contrast to the glassy phase, the mo- tionofthecompressibilityshowsthatthesystemisinfactin- mentumdistributionexhibitsinterferencepeakswhichsignal compressibleatthesecriticalfillings. Thesefeaturesarerem- thequasi-long-rangecoherencecharacteristicofthisphase: a iniscentoftheMottinsulatingphaseatν = 1,sowereferto large peak at Q = 0 and quasiperiodicity induced peaks at thesephasesasMott-likeband-insulatorphases. However,in reciprocal lattice vectors ~Q whose intensity depends on contrasttotheMottphase,numberfluctuationsinthesephases n ± the filling factor. These peaks also exist in the noise inter- donotcompletelyvanish,butareonlysomewhatreduced. ferencepatternwheretheyarenarrowerandareaccompanied A rather interesting consequence of the Mott-like band- 4 insulating transitions is the fact that as ν is increased be- small λ << J, first order perturbation theory explains the yondthecriticalvalue,thepeaksatthereciprocallatticevec- single step observed at ν(1) = Q a/π, as only z(k1) with tors associated with the corresponding filled band become k = ν(1)L is nonzero. jAus λ i|ncr1e|ases further, m0ore steps dips. This change in the sign of the peaks beyond the crit- 1 ju areobservedasothereigenvectors,acquireanonzeroQ = 0 icalfilling can be seen by plottingthe fringevisibility ϑ = n component. ThestepscanalsobeseenintheQ =0planeof ∆(Q ) [∆(Q +δQ) ∆(Q δQ)]/2,withδQ=4π/aL. n − n − n− n(Q). Atcriticality,thewholehierarchyofstepsresemblesa Fig. 3 illustrates this for the dominant peaks that occur at devil’sstaircase, mimickingthe multi-fractalstructureof the Q . Herethepeaktodiptransitionatν(1),issignaledbya 1 c gapsinanenergyspectrumthatisaCantorset[9]. ± jumpinthevisibilityfrompositivetonegative.Thisdipinthe secondorderinterferencepatterncanbeinterpretedasaman- ifestationoffermionization. Physicalinsightintothisbehav- ior can be gained by looking at the noise correlation pattern of a single particle which can be shown to exhibit negative fermion-type dips: ∆(Q) = z0 2δQ0 zQz0 2 with zQ is 1 | | −| | nHQL 1 theFourier-transformofthegroundstate wavefunction. For 0.5 0.8 HCBsthesenegativefringessurviveevenfortwoatoms. This 0 0.6 Ν impliesthatthepeaktodiptransitioncanbeunderstoodasthe --ΠΠ(cid:144)(cid:144)22 0.4 00 0.2 consequenceofanemptybandpopulatedwithfewatoms. QQaa ΠΠ(cid:144)(cid:144)22 Π IncontrasttothesuperfluidbehaviorofHCBs,fermionsin the extendedphase havemetallic propertiesand differentin- terferometric pattern. For λ = 0, the sharply peaked HCB momentumdistributionisreplacedbyastep-functionprofile for fermions: n(Q) = 1 for Q Q and n(Q) = 0 for 0.02 F | | ≤ 1 |Q| > QF, with QF = πν/a being the Fermi momentum. DHQL0.01 0.8 For 0 < λ < λ this distribution retains part of the step- 0 0.6 c ΠΠ(cid:144)(cid:144)22 0.4 Ν like profile of the free fermion gas. However, the Fermi sea ΠΠ gets fragmented and additional step-function structures cen- QQaa 33ΠΠ(cid:144)(cid:144)22 0.2 teredatdifferentreciprocallatticevectorsofthesecondlattice develop(SeeFig.4). Wecallthefilledstatescenteredaround Q = 0 the main Fermi sea and those around the QP related FIG.4: (color online) Fermionsinthemetallicphase, λ = 0.5J. reciprocallatticevectorsthequasi-Fermiseas. Top:MomentumdistributionandBottom:noisecorrelations. The quasi-Fermi seas emanating from the QP reciprocal lattice vectorsformtongue-likestructureswhichresemblein In summary, quasiperiodicity can be exploited to distin- manyrespectstheArnoldtonguesthatdescribemode-locked guishglassyandMottphasesandinduceaseriesofMott-like periodic windows in the circle map [15]. As the number band insulating phases. Furthermore, it provides an explicit of atoms increases, the width of the tongues increase. Pre- probetowitnessfermionizationofbosons,andfacilitatesthe cisely at the critical fillings νc(n) and ν¯c(n), at which a quasi- experimentalobservationofcomplexfractalstructures. bandis filled upand the system becomesa band-insulator,a quasi-Fermi sea merges with the main Fermi sea. As λ in- creases, more tonguesbecomevisible, and with the increase ofν theyoverlapinacomplexpattern. AsseeninFig.4,we [1] R.Scalettar,G.BatrouniandG.Zimanyi,PhysRevLetter,66, have tongues corresponding to both the particles and holes, 3144,(1991). whichtogetherdescribethefragmentedFermi-Diracdistribu- [2] J.E.Lyeetal,Phys.Rev.Lett.95,070401(2005) tionwhenbothQandν vary. [3] K.DreseandM.Holthaus,PhysRevLetter,78,2932,(1997). Noise correlationsforfermions( Fig. 4)also beara strik- [4] D.JakschandP.Zoller,New.J.Phys.5,56(2003); ing contrast to those of HCBs ( Fig. 2 and 3). One sees a [5] B.Damskietall,PhysRevLetter,91, 080403(2003); K.Os- series of plateausat reciprocallattice vectors, as ν is varied. terlohetal,PhysRevLetter,95,010403(2005). [6] M.Girardeau,J.Math.Phys.1,516(1960). Theoriginofthisstep-likestructure,wherejumpsoccuratthe [7] B.ParedesetalNature429,277(2004). fillingfactorsν(n) = Q a/π,canbeunderstoodfromaper- ju | n| [8] S.L.Cornishetal,Phys.Rev.Lett.85,1795(2000). turbativeargumentasfollows. Fornon-interactingfermions, [9] Forareview,seeJ.B.Sokoloff,Phys.Rep.126,189(1985). for Q = 0, ∆(Q,0) = N−1 z(k)z(k) 2 with z(k) being [10] R.HanburyBrown,R.Q.Twiss,Nature177,27(1956). theFou6 riertransformof−thePkkth=0sin|gQle-pa0rti|cleeigenQfunction. [11] E.Altmanetal,Phys.Rev.A70,013603(2004). [12] S.Foellingetal,Nature434,481(2005). For λ = 0 , this overlap between any two different Fourier [13] A. M. Rey, I.I.Satija, and C. W.Clark cond-mat/0511700 (J. componentsis always zero as only the ground(k = 0) state Phys.Binpress). has a zero quasi-momentum component, ie, z(0) = 1. For [14] M.Fisheretal,Phys.Rev.B40,546,(1989). 0 5 [15] E. Ott, Chaos in Dynamical Systems, Cambridge University [17] E.Lieb,T.SchultzandD.Mattis,Ann.Phys.16(1961)407. Press,1993. [18] J.Friedel,NuovoCimentoSuppl.72871958. [16] R.RothandK.Burnett,PhysRevA,68,023604(2003).