SpringerBriefs in Mathematics Clarice Dias de Albuquerque Eduardo Brandani da Silva · Waldir Silva Soares Jr. Quantum Codes for Topological Quantum Computation SpringerBriefs in Mathematics SeriesEditors NicolaBellomo,Torino,Italy MicheleBenzi,Pisa,Italy PalleJorgensen,Iowa,USA TatsienLi,Shanghai,China RoderickMelnik,Waterloo,Canada OtmarScherzer,Linz,Austria BenjaminSteinberg,NewYork,USA LotharReichel,Kent,USA YuriTschinkel,NewYork,USA GeorgeYin,Detroit,USA PingZhang,Kalamazoo,USA SpringerBriefsinMathematicsshowcasesexpositionsinallareasofmathematics andappliedmathematics.Manuscriptspresentingnewresultsorasinglenewresult inaclassicalfield,newfield,oranemergingtopic,applications,orbridgesbetween newresultsandalreadypublishedworks,areencouraged.Theseriesisintendedfor mathematicians and applied mathematicians. All works are peer-reviewed to meet thehigheststandardsofscientificliterature. SBMAC SpringerBriefs EditorialBoard CelinaM.H.deFigueiredo FederalUniversityofRiodeJaneiro(UFRJ) TheAlbertoLuizCoimbraInstituteforGraduateStudies andResearchinEngineering(COPPE) PrograminSystemsEngineeringandComputing(PESC) RiodeJaneiro,Brazil PauloJ.S.Silva UniversityofCampinas(UNICAMP) InstituteofMathematics,StatisticsandScientificComputing(IMECC) DepartmentofAppliedMathematics Campinas,Brazil The SBMAC SpringerBriefs series publishes relevant contributions in the fields ofappliedandcomputationalmathematics,mathematics,scientificcomputing,and related areas. Featuring compact volumes of 50 to 125 pages, the series covers a rangeofcontentfromprofessionaltoacademic. The Brazilian Society of Computational and Applied Mathematics (Sociedade Brasileira de Matemática Aplicada e Computacional – SBMAC) is a professional association focused on computational and industrial applied mathematics. The societyisactiveinfurtheringthedevelopmentofmathematicsanditsapplications inscientific,technological,andindustrialfields.TheSBMAChashelpedtodevelop theapplicationsofmathematicsinscience,technology,andindustry,toencourage the development and implementation of effective methods and mathematical tech- niques for the benefit of science and technology, and to promote the exchange of ideasandinformationbetweenthediverseareasofapplication. http://www.sbmac.org.br/ Clarice Dias de Albuquerque • Eduardo Brandani da Silva • Waldir Silva Soares Jr. Quantum Codes for Topological Quantum Computation ClariceDiasdeAlbuquerque EduardoBrandanidaSilva ScienceandTechnologyCenter MathematicsDepartment FederalUniversityofCariri StateUniversityofMaringa JuazeirodoNorte,Ceará,Brazil Maringá,Paraná,Brazil WaldirSilvaSoaresJr. Mathematics FederalTechnologicalUniversityofParaná PatoBranco,Paraná,Brazil ISSN2191-8198 ISSN2191-8201 (electronic) SpringerBriefsinMathematics ISBN978-3-031-06832-4 ISBN978-3-031-06833-1 (eBook) https://doi.org/10.1007/978-3-031-06833-1 MathematicsSubjectClassification:81P68,81P70,94B05,94B10,94B12,94B15 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Wededicatethisbooktoourfamiliesandto ProfessorReginaldoPalazzoJunior Contents 1 Introduction .................................................................. 1 1.1 HistoricalSummary ................................................... 1 1.2 TheQuantumProperties............................................... 4 1.2.1 SuperpositionofStates ...................................... 5 1.2.2 Entanglement................................................. 6 1.3 PrincipleofQuantumErrorCorrection............................... 7 1.3.1 StabilizerCodes.............................................. 9 1.4 QuantumBounds ...................................................... 10 1.5 CodifyingwithTopology.............................................. 11 2 ReviewofMathematicalConcepts ........................................ 15 2.1 ClassicalError-CorrectingCodes..................................... 16 2.1.1 BasicDefinitions............................................. 16 2.2 BlockCodes ........................................................... 19 2.2.1 LinearCodes ................................................. 20 2.3 LinearAlgebra......................................................... 24 2.3.1 QuantumBit.................................................. 24 2.3.2 MatricesandOperators...................................... 26 2.4 QuantumInformationandQuantumComputation................... 33 2.5 AGlimpseofQuantumMechanics................................... 33 2.5.1 Postulates..................................................... 33 2.5.2 QuantumGates............................................... 35 2.6 IntroductiontoQuantumError-CorrectingCodes ................... 36 2.6.1 The3-QubitQuantumCode................................. 37 2.6.2 ShorCode .................................................... 40 2.7 QuantumError-CorrectionCriterion ................................. 42 2.8 CSSCodes ............................................................. 43 2.9 StabilizerQuantumCodes............................................. 44 2.9.1 Anti-commutation............................................ 45 2.9.2 StabilizerGroup.............................................. 46 2.9.3 StabilizerCodeandExamples............................... 47 vii viii Contents 2.10 HyperbolicGeometry.................................................. 49 2.10.1 IsometriesoftheHyperbolicPlane ......................... 52 2.10.2 RegularTessellations ........................................ 53 3 TopologicalQuantumCodes................................................ 55 3.1 ToricCodes ............................................................ 56 3.1.1 ToricCodesfromtheHomologyPointofView............ 59 3.1.2 CorrectionatthePhysicalLevel ............................ 62 3.2 ProjectivePlaneandQuantumCodes ................................ 63 3.3 OtherToricCodes ..................................................... 64 3.3.1 PolyominoQuantumCodes ................................. 66 3.4 HyperbolicTopologicalQuantumCodes............................. 70 (cid:2) 3.4.1 GenerationofaSurfacefromaPolygonP ................ 71 3.4.2 Constructions of Hyperbolic Topological QuantumCodes.............................................. 77 4 ColorCodes .................................................................. 87 4.1 QuantumColorCodes................................................. 87 4.2 ColorCodesonCompactSurfaces ................................... 90 4.3 ColorCodesonSurfaceswithBoundary............................. 96 5 TheInterplayBetweenColorCodesandToricCodes................... 103 5.1 Introduction............................................................ 103 5.2 QuantumDoubleModels.............................................. 104 5.2.1 ToricCode.................................................... 105 5.2.2 ColorCodes.................................................. 107 5.3 ColorCodeEquivalencetoTwoCopiesofToricCodes............. 110 Bibliography...................................................................... 113 Chapter 1 Introduction Thisbookisintendedtobeanintroductorymaterialontopologicalquantumcodes, with the necessary elements from a mathematical and engineering point of view, aimed at postgraduate or undergraduate students at more advanced level, in the coursesofMathematics,Engineering,orComputing. Asanintroductiontothisbook,thischapterpresents,ingeneralterms,thecentral concepts of quantum computing and how it was developed through a historical overview.Then,theerror-correctingquantumcodemodelsarehighlighted,uptothe topologicalquantumcodes,accordingtothechronology,thusgivinganoverviewof thisresearchareaandwhatwillbecoveredduringtheotherchaptersofthebook. A review of the main concepts and properties of quantum mechanics that are importantforquantumcomputation,aswellasthenecessaryalgebraicstructure,is giveninChap.2.Alsointhesamechapter,thetheoryoferror-correctingquantum codesandthemaincodesthatgaverisetothisareaofresearcharepresentedinmore depth. Chapter 3 is devoted to topological quantum codes (or surface codes), from Kitaev’s toric code to generalizations on hyperbolic surfaces, along with the mathematicalstructuresnecessaryfortheirconstruction.Chapter4introducescolor codesaswellastheirgeneralizationtohyperbolicsurfaces.Finally,Chap.5aimsto showaconnectionsbetweentoriccodesandcolorcodes. 1.1 HistoricalSummary In the firsthalf of the twentieth century, as studies on atoms deepened, the known physicsuntilthenbecameinefficientinexplainingsomephenomena,givingriseto theemergenceofquantumphysics. In1982,Feynmanraisedquestionslike“Canphysicsbesimulatedbyauniversal computer?”inhislandmarkarticle“Simulatingphysicswithcomputers”[47],and ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2022 1 C.D.deAlbuquerqueetal.,QuantumCodesforTopologicalQuantumComputation, SpringerBriefsinMathematics,https://doi.org/10.1007/978-3-031-06833-1_1 2 1 Introduction thuslaunchedforthefirsttimetheideaofacomputerbasedonquantumproperties. Hewasinterestedintheexactsimulationproblemofquantumphysics,whichdoes notseemtobepossibletocarryoutonaclassicalcomputer. In [42], physicist David Deutsch described a quantum generalization of the class of Turing machines, the universal quantum computer. His conception of a quantum computer could, in principle, be constructed and have properties that no Turing machine would be able to reproduce, such as “quantum parallelism”—the possibility of evaluating functions f(x) for different values of x simultaneously. Deutsch’s conjecture that a universal computer is sufficient to efficiently simulate anarbitraryphysicalsystemhasnotyetbeenprovenordisproved. Among many important results of David Deutsch in the quantum theory of computation, the quantum algorithm of Deutsch–Jozsa stands out, together with Richard Jozsa in [43], as one of the first examples of a quantum algorithm that is exponentially faster than any possible classical deterministic algorithm. However, the problem that this algorithm solves is not something so practical that it could arousemoreinterest. Some quantum algorithms showed a slight advantage over classical computers, butaresultobtainedbymathematicianPeterShorin1994gavestrengthtotheidea that quantum computers would in fact be more efficient than classical computers and boosted research in this direction. Shor’s algorithm became the most famous result in terms of the speed of a quantum computer because it solves a practical problem much faster than previously known algorithms. Shor demonstrated that a quantumcomputercouldfactoranumberwithndigitsusingquantumpropertiesina numberofcomputationalstepsthatgrowspolynomiallybyn,[90].Onconventional computers,thebestknownalgorithmsrequireexponentiallygrowingresources. The problem of factoring integers into prime components is well known in the mathematicalworldandhasitsmainpracticalapplicationincryptography,suchas indataencodingschemesusedbybanksoronwebsites.Thisexplainstheimpactof Shor’swork.Duetotheenormoussuccessofthisalgorithm,manyresearchershave launched themselves into the search for other efficient quantum algorithms. The main discovery after Shor’s algorithm was made in 1996 by mathematician Lov Grover.ThealgorithmproposedbyGroversearchesinadatabase,findingspecific items that have predetermined properties, [58]. In the classic case, to specifically find an item in a list of N items, where N grows exponentially as the problem sizeincreases,about N operations areneeded.√Grover’s algorithm,usingquantum properties,solvesthissameproblemwithonly N operations,whichrepresentsa muchsmallernumberofsteps.Despiteofferingonlyaquadraticspeedgain,thisis asignificantadvance, especiallysinceitisanalgorithmthatisoftenusedinother problems. A feature of many quantum algorithms, which can be observed in Shor andGrover’salgorithms,isquantumparallelism. Other quantum algorithms based on the quantum Fourier transform, amplitude amplification, quantum walks, and topological quantum field theory, among other techniquesandideas,havebeenpresentedoverthelasttwodecades.However,itis notonlyalongthislinethatresearchinquantumcomputingisdeveloped.