ebook img

Quantum Chromodynamics on a space-time lattice - Prace Training PDF

53 Pages·2013·8.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Chromodynamics on a space-time lattice - Prace Training

25  June, 2013 HPC Summer School New York, USA(cid:1) Akira Ukawa Center for Computational Science, University of Tsukuba & RIKEN AICS(cid:1) Quantum Chromodynamics on a space-time lattice – Building up the Femto Universe of(cid:7)hadrons and nuclei on a computer – 1 Four decades of Lattice QCD 1975 1980 1985 1990 1995 2000 2005 2010 2020 1973 QCD 1974 lattice QCD Physics 1st spec calculation 1981 Hamber-Parisi Weingarten 0.8fm 1.6fm 3.0fm 2.4fm Lattice size L 43x8 163x32 643x118 243x48 Nf=0 quenched 6.0fm Algorithms 643x128 Nf=2 u,d Nf =#sea Nf=2+1 u,d,s quarks 4th generation 5th generation 3rd generation 10Pfops 2nd generation 10Tfops Machines 10Gflops 1Tfops 1st generation K comouter APE100 1Gflops APE1 QCDPAX QCDOC BlueGene/Q QCDSP CP-PACS PACS-CS Today’s agenda " Lattice QCD as science " Lattice QCD as computation " A few epoch-making calculations " (Other) challenges of Lattice QCD " Conclusions and perspectives 3 Lattice QCD as science 4 The Standard Model (cid:12)(cid:3)building blocks at the age 10-6 sec(cid:12) !  Matter particles u s t & # & # & # $ ! $ ! $ ! "  6 quarks d c b % " % " % " & e # &µ# &τ# "  6 leptons $ ! $ ! $ ! $ ! $ ! $ ! ν ν ν % e" % µ" % τ" !  Particles mediating interactions γ "  photon Electromagnetism Weinberg-Salam "  Weak bosons W, Z Weak interactions theory (1967) "  gluons g Strong interaction Quantum Chromodynamics !  Particle which breaks EW symmetry (QCD) (1973) (and gives rise to masses of particles) "  Higgs boson H Englert-Brout, Higgs, … (1964) ( ) ( ) ( ) SU 3 ⊗ SU 2 ⊗U 1 !  Gauge field theory based on   QCD EM +Weak Has to add Lee-Yang(cid:1) Standard Model and Nobel Prize in Physics(cid:1) 1965 Tomonaga(cid:8)Schwinger(cid:8)Feynman Renormalization theory(cid:1) 1949 QED Spontaneous breakdown 2008 Nambu of symmetry(cid:1) 1967 EW theory 1979 Glashow(cid:8)Salam(cid:8)Weinberg 1982 Wilson Renormalization group (cid:1) 2008 Kobayashi(cid:8)Maskawa 6 quarks and CP violation(cid:1) 1973 QCD 1999 tHooft(cid:8)Veltman Renormalization of non-Abelian gauge theories(cid:1) 2004 Gross(cid:8)Politzer(cid:8)Wilczek Asymptotic freedom (cid:1) 6 Quarks, hadrons, nuclei and Quantum Chromodynamics (QCD)(cid:1) −15 The Femto Universe(cid:1) 1 fm = 1×10 m Nuclei(cid:1) H, He,…, C,…, O,…, Fe,…, U,…(cid:1) hadrons quarks(cid:1) e.g., proton and neutron(cid:1) u d u u ≈ 2 fm 1/3 ≈ 1.6A fm Natural elements (nuclei) are governed by Quantum Chromodynamics (QCD) Cf. Chemistry is governed by quantum electrodynamics (QED) 7 A few more words on quarks and hadrons(cid:1) !  6 types of quark “flavors” 2 u c t Q = + e Carry fractional charge in up charm top 3 s 1 units of electron charge(cid:1) d b Q = − e down strange bottom 3 Heavier mass(cid:1) !  various flavor combinations produce a few hundred particles called “hadrons” u u s proton(cid:1) d neutron(cid:1) d Ω baryon(cid:1) s (cid:8)(cid:8)(cid:8)(cid:8)(cid:8)(cid:1) u d s See Particle Data Group http://pdg.lbl.gov/ for a full list(cid:1) !  Yet, no isolated quarks have been found in experiments; quarks are confined under normal circumstances 8 Quantum Chromodynamics Gross-Wilczek-Politzer 1973 !  Quantum field theory of quarks and gluons q (x) quark field f defined at every 4-dim space-time point A (x) gluon field x = (x , x , x ,t) µ 1 2 3 !  Quarks carry color(chromo) charge, and gluons mediate the interaction between color charges Cf. electrons carry electric charge, and photons mediate the interaction between electric charges !  Given the coupling strength and 6 quark masses, allows first- principles calculations of all the properties of hadrons and nuclei e2 α = color QCD coupling strength s 4πc m , m , m , m , m , m 6 quark masses u d s c b t (cid:4)fulfilling Yukawa(cid:3)s dream of 1934 in a refined way(cid:5)(cid:1) 9 Three fundamental features of QCD !  Described by quark and gluon fields defined at every point of space-time, and NOT by particles q (x) A (x) x = (x , x , x ,t) quark field gluon field f µ 1 2 3 !  Local interaction only, i.e., no points separated by a finite distance interact, only neighboring points do so 1 L (x) = Tr(F (x)F (x))+∑q (x)(γ ⋅(∂ −iA (x))+ m )q (x) QCD µν µν f µ µ µ f f 8πα s f QCD Lagrangian !  Relativistic quantum mechanical system; the fundamental equation is an integral over fields (Feynman), and NOT a partial differential equation 1 − ∫ d4xL (x) O(A, q, q) = ∫ ∏dA(x)dq (x)dq(x) O(A, q, q)e QCD Z x Physical quantities by Feynman path integral 10

Description:
1. Quantum Chromodynamics on a space-time lattice. Akira Ukawa. Center for Computational Science,. University of Tsukuba & RIKEN AICS. 25 June, 2013.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.