ebook img

Quantum aspects of black holes PDF

331 Pages·2015·4.81 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum aspects of black holes

Fundamental Theories of Physics 178 Xavier Calmet Editor Quantum Aspects of Black Holes Fundamental Theories of Physics Volume 178 Series editors Henk van Beijeren Philippe Blanchard Paul Busch Bob Coecke Dennis Dieks Detlef Dürr Roman Frigg Christopher Fuchs Giancarlo Ghirardi Domenico J.W. Giulini Gregg Jaeger Claus Kiefer Nicolaas P. Landsman Christian Maes Hermann Nicolai Vesselin Petkov Alwyn van der Merwe Rainer Verch R.F. Werner Christian Wuthrich More information about this series at http://www.springer.com/series/6001 Xavier Calmet Editor Quantum Aspects of Black Holes 123 Editor XavierCalmet Department of Physicsand Astronomy Universityof Sussex Brighton UK ISBN 978-3-319-10851-3 ISBN 978-3-319-10852-0 (eBook) DOI 10.1007/978-3-319-10852-0 LibraryofCongressControlNumber:2014951685 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The decision to write this book arose in discussions among members of the WorkingGroup1(WG1)oftheEuropeanCooperationinScienceandTechnology (COST)actionMP0905“BlackHolesinaViolentUniverse,”whichstartedin2010 and ended in May 2014. The four years of the action have been absolutely fantastic for the research themes represented by WG1. The discovery of the Higgs boson which completes thestandardmodel ofparticle physicswas crowned bythe2013 Nobelprize.This discoveryhasimportantimplicationsfortheunificationofthestandardmodelwith general relativity which is important for Planck size black holes. Understanding at what energy scale these forces merge into a unified theory, will tell us what is the lightest possible mass for a black hole. In other words, the Large Hadron Collider (LHC) at CERN data allows us to set bounds on the Planck scale. We now know thatthePlanck scale isabove5TeV.Thus,Planckian black holes areheavierthan 5TeV.ThefactthatnodarkmatterhasbeendiscoveredattheLHCintheformofa newparticlestrengthenstheassumptionthatprimordialblackholescouldplaythat role. The data from the Planck satellite reinforce the need for inflation. Planckian black holes can make an important contribution at the earliest moment of our universe, namely during inflation if the scale at which inflation took place is close enough to the Planck scale. There have been several interesting proposals relating theHiggsbosonofthestandardmodelofparticlephysicswithinflation.Indeed,the LHC data imply that the Higgs boson could be the inflation if the Higgs boson is non-minimally coupled to space-time curvature. In relation to the black hole information paradox, there has been much excite- mentaboutfirewallsorwhathappenswhenanobserverfallsthroughthehorizonof ablackhole.However,firewallsrelyonatheorembyBanks,SusskindandPeskin [Nucl. Phys. B244 (1984) 125] for which there are known counter examples as shownin1995byWaldandUnruh[Phys.Rev.D52(1995)2176–2182].Itwillbe interesting to see how the situation evolves in the next few years. v vi Preface These then are the reasons for writing this book, which reflects on the progress madeinrecentyearsinafieldwhichisstilldevelopingrapidly.Aswellassomeof themembers ofour working group, severalother international expertshave kindly agreed to contribute to the book. The result is a collection of 10 chapters dealing with different aspects of quantum effects in black holes. By quantum effects we mean both quantum mechanical effects such as Hawking radiation and quantum gravitational effects such as Planck size quantum black hole. Chapter1ismeanttoprovideabroadintroductiontothefieldofquantumeffects inblackholesbeforefocusingonPlanckianquantumblackholes.Chapter2covers thethermodynamicsofblackholeswhileChap.3dealswiththefamousinformation paradox.Chapter4discussesanothertypeofobject,so-calledmonsters,whichhave more entropythan black holes ofequal mass. Primordialblack holesare discussed in Chaps. 5 and 6 reviews self-gravitating Bose-Einstein condensates which open up the exciting possibility that black holes are Bose-Einstein condensates. The formation of black holes in supersymmetric theories is investigated in Chap. 7. Chapter 8 covers Hawking radiation in higher dimensional black holes. Chapter 9 presentsthelatestboundsonthemassofsmallblackholeswhichcouldhavebeen producedattheLHC.Lastbutnotleast,Chap.10coversnon-minimallengtheffects inblack holes.Allchaptershave been througha strict reviewingprocess. This book would not have been possible without the COST action MP0905. In particularwewouldliketothankSilkeBritzen,thechairofouraction,themembers of the core group (Antxon Alberdi, Andreas Eckart, Robert Ferdman, Karl-Heinz Mack, Iossif Papadakis, Eduardo Ros, Anthony Rushton, Merja Tornikoski and Ulrike Wyputta in addition to myself) and all the members of this action for fascinating meetings and conferences. We are very grateful to Dr. Angela Lahee, ourcontactatSpringer,forherconstantsupportduringthecompletionofthisbook. Brighton, August 2014 Xavier Calmet Contents 1 Fundamental Physics with Black Holes . . . . . . . . . . . . . . . . . . . . 1 Xavier Calmet 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Quantum Black Holes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Low Scale Quantum Gravity and Black Holes at Colliders . . . . 5 1.4 An Effective Theory for Quantum Gravity. . . . . . . . . . . . . . . . 11 1.5 Quantum Black Holes in Loops . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 Quantum Black Holes and the Unification of General Relativity and Quantum Mechanics. . . . . . . . . . . . . 16 1.7 Quantum Black Holes, Causality and Locality . . . . . . . . . . . . . 20 1.8 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2 Black Holes and Thermodynamics: The First Half Century . . . . . 27 Daniel Grumiller, Robert McNees and Jakob Salzer 2.1 Introduction and Prehistory . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 1963–1973 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3 1973–1983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4 1983–1993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5 1993–2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.6 2003–2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.7 Conclusions and Future. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 The Firewall Phenomenon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 R.B. Mann 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 Black Holes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.1 Gravitational Collapse. . . . . . . . . . . . . . . . . . . . . . . . 75 3.2.2 Anti de Sitter Black Holes. . . . . . . . . . . . . . . . . . . . . 77 3.3 Black Hole Thermodynamics. . . . . . . . . . . . . . . . . . . . . . . . . 78 vii viii Contents 3.4 Black Hole Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.4.1 Quantum Field Theory in Curved Spacetime . . . . . . . . 80 3.4.2 Pair Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.5 The Information Paradox. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.5.1 Implications of the Information Paradox . . . . . . . . . . . 94 3.5.2 Complementarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.6 Firewalls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.6.1 The Firewall Argument. . . . . . . . . . . . . . . . . . . . . . . 98 3.6.2 Responses to the Firewall Argument. . . . . . . . . . . . . . 100 3.7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4 Monsters, Black Holes and Entropy. . . . . . . . . . . . . . . . . . . . . . . 115 Stephen D.H. Hsu 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.2 What is Entropy?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.3 Constructing Monsters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.3.1 Monsters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.3.2 Kruskal–FRW Gluing. . . . . . . . . . . . . . . . . . . . . . . . 120 4.4 Evolution and Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.5 Quantum Foundations of Statistical Mechanics. . . . . . . . . . . . . 124 4.6 Statistical Mechanics of Gravity? . . . . . . . . . . . . . . . . . . . . . . 126 4.7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5 Primordial Black Holes: Sirens of the Early Universe. . . . . . . . . . 129 Anne M. Green 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.2 PBH Formation Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.2.1 Large Density Fluctuations . . . . . . . . . . . . . . . . . . . . 130 5.2.2 Cosmic String Loops . . . . . . . . . . . . . . . . . . . . . . . . 132 5.2.3 Bubble Collisions. . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.3 PBH Abundance Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.3.1 Evaporation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.3.2 Lensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.3.3 Dynamical Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.3.4 Other Astrophysical Objects and Processes . . . . . . . . . 137 5.4 Constraints on the Primordial Power Spectrum and Inflation . . . 138 5.4.1 Translating Limits on the PBH Abundance into Constraints on the Primordial Power Spectrum. . . . 139 5.4.2 Constraints on Inflation Models . . . . . . . . . . . . . . . . . 141 5.5 PBHs as Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Contents ix 6 Self-gravitating Bose-Einstein Condensates. . . . . . . . . . . . . . . . . . 151 Pierre-Henri Chavanis 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.2 Self-gravitating Bose-Einstein Condensates . . . . . . . . . . . . . . . 155 6.2.1 The Gross-Pitaevskii-Poisson System . . . . . . . . . . . . . 155 6.2.2 Madelung Transformation . . . . . . . . . . . . . . . . . . . . . 156 6.2.3 Time-Independent GP Equation . . . . . . . . . . . . . . . . . 158 6.2.4 Hydrostatic Equilibrium . . . . . . . . . . . . . . . . . . . . . . 158 6.2.5 The Non-interacting Case . . . . . . . . . . . . . . . . . . . . . 159 6.2.6 The Thomas-Fermi Approximation. . . . . . . . . . . . . . . 160 6.2.7 Validity of the Thomas-Fermi Approximation . . . . . . . 161 6.2.8 The Total Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.2.9 The Virial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 163 6.3 The Gaussian Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 6.3.1 The Total Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.3.2 The Mass-Radius Relation. . . . . . . . . . . . . . . . . . . . . 164 6.3.3 The Virial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 169 6.3.4 The Pulsation Equation. . . . . . . . . . . . . . . . . . . . . . . 169 6.4 Application of Newtonian Self-gravitating BECs to Dark Matter Halos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.4.1 The Non-interacting Case . . . . . . . . . . . . . . . . . . . . . 170 6.4.2 The Thomas-Fermi Approximation. . . . . . . . . . . . . . . 170 6.4.3 Validity of the Thomas-Fermi Approximation . . . . . . . 172 6.4.4 The Case of Attractive Self-interactions. . . . . . . . . . . . 172 6.5 Application of General Relativistic BECs to Neutron Stars, Dark Matter Stars, and Black Holes . . . . . . . . . . . . . . . . . . . . 173 6.5.1 Non-interacting Boson Stars. . . . . . . . . . . . . . . . . . . . 174 6.5.2 The Thomas-Fermi Approximation for Boson Stars . . . 175 6.5.3 Validity of the Thomas-Fermi Approximation . . . . . . . 177 6.5.4 An Interpolation Formula Between the Non-interacting Case and the TF Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.5.5 Application to Supermassive Black Holes . . . . . . . . . . 178 6.5.6 Application to Neutron Stars and Dark Matter Stars . . . 179 6.5.7 Are Microscopic Quantum Black Holes Bose-Einstein Condensates of Gravitons? . . . . . . . . . . 180 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 6.7 Self-interaction Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 6.8 Conservation of Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 6.9 Virial Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 6.10 Stress Tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.11 Lagrangian and Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 189 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.