ebook img

Quantum annealing and the Sign Problem PDF

23 Pages·2012·1.73 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum annealing and the Sign Problem

Quantum annealing and the Sign Problem Gustavo Du¨ring and Jorge Kurchan PMMH-ESPCI,Paris [email protected] http://www.pmmh.espci.fr/∼jorge IHP 2012 J.Kurchan (PMMH-ESPCI) Signproblem 1/1 1. The sign problem J.Kurchan (PMMH-ESPCI) Signproblem 2/1 We are asked to compute averages over configurations s (cid:80) e−W(s)O(s) (cid:104)O(cid:105) = s (cid:80) e−W(s) s and W = W + iW is not real. R I J.Kurchan (PMMH-ESPCI) Signproblem 3/1 Quantum mechanics / Field Theory with real time or θ-terms Hubbard-Stratonovich decoupling W = W −b(cid:80)C2 o α Z = (cid:88)e−Wo(s)−b(cid:80)Cα2 = (cid:88)(cid:90) dλ e−Wo(s)+√bλαCα−λ22α s s TheHubbard-Stratonovichtransformationaboveintroducesan (cid:112) (cid:80) imaginarytermW = |b| λ C intherepulsivecaseb<0. I α α J.Kurchan (PMMH-ESPCI) Signproblem 4/1 In solid state theory the sign problem is the main obstacle for giving a numerical answer to very urgent questions. e.g. HubbardmodelH =−t(cid:80) (c† c +h.c.)+U(cid:80) n n <ij>,σ iσ jσ i i↑ i↓ J.Kurchan (PMMH-ESPCI) Signproblem 5/1 For definiteness: W = ih M(s) I I whereM(s)isaninteger-valued: —————- (cid:88) Z = Z e−ihIM M M (cid:88) Z = e−βF(M) = δ(M(s)−M) e−WR M s —————— • Fieldtheorywithθ terms. M =atopologicalnumber ’tHooft,Haldane,... • Fermionsystems: M =Fermionworld-linecrossings Muramatsuetal • Hubbardmodel: M =thenumberofupHirschspins [withavariantofHubbard-Stratonovichtransformation,see:DeForcrand,Batrouni] J.Kurchan (PMMH-ESPCI) Signproblem 6/1 Also: If we knew how to deal with the sign problem, we would know how to compute numerically averaged disordered models using identities of the form 1 =−lim 1−e−λx =−lim (cid:80)∞(−1)nλnxn−1 x λ→∞ x λ→∞ 1 n! ———————- (cid:104)E(cid:105) = −Z−1 ∂Z = −lim ∂ (cid:80)∞ (−1)nλnZn ∂β λ→∞∂β 1 n n! J.Kurchan (PMMH-ESPCI) Signproblem 7/1 In practice, what we can do is to compute (cid:104)O(cid:105) = (cid:104)e−iWI O(cid:105)R ; where (cid:104)•(cid:105) = P •e−WR(s) (cid:104)e−iWI(cid:105)R R Pe−WR(s) Note that Monte Carlo is only really good to calculate (cid:104)O(cid:105) for O non-exponential and not for (cid:104)e−B O(cid:105) (cid:104)O(cid:105) = A (cid:104)e−B(cid:105) A if, e.g. B is exponential in N J.Kurchan (PMMH-ESPCI) Signproblem 8/1 An example: Non-interacting spins in a magnetic field h +iπ R 2 Z = (cid:16)e−h−iπ2 +eh+iπ2(cid:17)N = e−iN2π (cid:0)e−h−eh(cid:1)N J.Kurchan (PMMH-ESPCI) Signproblem 9/1 (q+p)N (q − p)N (q+p)N = (cid:80) N! qN−rpr r r!(N−r)! (q−p)N = (cid:80) N! (−1)rqN−rpr r r!(N−r)! J.Kurchan (PMMH-ESPCI) Signproblem 10/1

Description:
Quantum annealing and the Sign Problem. Gustavo Düring and Jorge Kurchan. PMMH-ESPCI, Paris [email protected] http://www.pmmh.espci.fr/∼jorge.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.