Quantum annealing and the Sign Problem Gustavo Du¨ring and Jorge Kurchan PMMH-ESPCI,Paris [email protected] http://www.pmmh.espci.fr/∼jorge IHP 2012 J.Kurchan (PMMH-ESPCI) Signproblem 1/1 1. The sign problem J.Kurchan (PMMH-ESPCI) Signproblem 2/1 We are asked to compute averages over configurations s (cid:80) e−W(s)O(s) (cid:104)O(cid:105) = s (cid:80) e−W(s) s and W = W + iW is not real. R I J.Kurchan (PMMH-ESPCI) Signproblem 3/1 Quantum mechanics / Field Theory with real time or θ-terms Hubbard-Stratonovich decoupling W = W −b(cid:80)C2 o α Z = (cid:88)e−Wo(s)−b(cid:80)Cα2 = (cid:88)(cid:90) dλ e−Wo(s)+√bλαCα−λ22α s s TheHubbard-Stratonovichtransformationaboveintroducesan (cid:112) (cid:80) imaginarytermW = |b| λ C intherepulsivecaseb<0. I α α J.Kurchan (PMMH-ESPCI) Signproblem 4/1 In solid state theory the sign problem is the main obstacle for giving a numerical answer to very urgent questions. e.g. HubbardmodelH =−t(cid:80) (c† c +h.c.)+U(cid:80) n n <ij>,σ iσ jσ i i↑ i↓ J.Kurchan (PMMH-ESPCI) Signproblem 5/1 For definiteness: W = ih M(s) I I whereM(s)isaninteger-valued: —————- (cid:88) Z = Z e−ihIM M M (cid:88) Z = e−βF(M) = δ(M(s)−M) e−WR M s —————— • Fieldtheorywithθ terms. M =atopologicalnumber ’tHooft,Haldane,... • Fermionsystems: M =Fermionworld-linecrossings Muramatsuetal • Hubbardmodel: M =thenumberofupHirschspins [withavariantofHubbard-Stratonovichtransformation,see:DeForcrand,Batrouni] J.Kurchan (PMMH-ESPCI) Signproblem 6/1 Also: If we knew how to deal with the sign problem, we would know how to compute numerically averaged disordered models using identities of the form 1 =−lim 1−e−λx =−lim (cid:80)∞(−1)nλnxn−1 x λ→∞ x λ→∞ 1 n! ———————- (cid:104)E(cid:105) = −Z−1 ∂Z = −lim ∂ (cid:80)∞ (−1)nλnZn ∂β λ→∞∂β 1 n n! J.Kurchan (PMMH-ESPCI) Signproblem 7/1 In practice, what we can do is to compute (cid:104)O(cid:105) = (cid:104)e−iWI O(cid:105)R ; where (cid:104)•(cid:105) = P •e−WR(s) (cid:104)e−iWI(cid:105)R R Pe−WR(s) Note that Monte Carlo is only really good to calculate (cid:104)O(cid:105) for O non-exponential and not for (cid:104)e−B O(cid:105) (cid:104)O(cid:105) = A (cid:104)e−B(cid:105) A if, e.g. B is exponential in N J.Kurchan (PMMH-ESPCI) Signproblem 8/1 An example: Non-interacting spins in a magnetic field h +iπ R 2 Z = (cid:16)e−h−iπ2 +eh+iπ2(cid:17)N = e−iN2π (cid:0)e−h−eh(cid:1)N J.Kurchan (PMMH-ESPCI) Signproblem 9/1 (q+p)N (q − p)N (q+p)N = (cid:80) N! qN−rpr r r!(N−r)! (q−p)N = (cid:80) N! (−1)rqN−rpr r r!(N−r)! J.Kurchan (PMMH-ESPCI) Signproblem 10/1
Description: