ebook img

Quantum Annealing and Other Optimization Methods PDF

384 Pages·2005·6.336 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Annealing and Other Optimization Methods

Lecture Notes in Physics EditorialBoard R.Beig,Wien,Austria W.Beiglböck,Heidelberg,Germany W.Domcke,Garching,Germany B.-G.Englert,Singapore U.Frisch,Nice,France P.Hänggi,Augsburg,Germany G.Hasinger,Garching,Germany K.Hepp,Zürich,Switzerland W.Hillebrandt,Garching,Germany D.Imboden,Zürich,Switzerland R.L.Jaffe,Cambridge,MA,USA R.Lipowsky,Golm,Germany H.v.Löhneysen,Karlsruhe,Germany I.Ojima,Kyoto,Japan D.Sornette,Nice,France,andLosAngeles,CA,USA S.Theisen,Golm,Germany W.Weise,Garching,Germany J.Wess,München,Germany J.Zittartz,Köln,Germany TheLectureNotesinPhysics TheseriesLectureNotesinPhysics(LNP),foundedin1969,reportsnewdevelopments in physics research and teaching – quickly and informally, but with a high quality and theexplicitaimtosummarizeandcommunicatecurrentknowledgeinanaccessibleway. Bookspublishedinthisseriesareconceivedasbridgingmaterialbetweenadvancedgrad- uatetextbooksandtheforefrontofresearchtoservethefollowingpurposes: •tobeacompactandmodernup-to-datesourceofreferenceonawell-definedtopic; •toserveasanaccessibleintroductiontothefieldtopostgraduatestudentsandnonspe- cialistresearchersfromrelatedareas; • to be a source of advanced teaching material for specialized seminars, courses and schools. Both monographs and multi-author volumes will be considered for publication. Edited volumes should, however, consist of a very limited number of contributions only. Pro- ceedingswillnotbeconsideredforLNP. Volumes published in LNP are disseminated both in print and in electronic formats, the electronic archive is available at springerlink.com. The series content is indexed, abstracted and referenced by many abstracting and information services, bibliographic networks,subscriptionagencies,librarynetworks,andconsortia. ProposalsshouldbesenttoamemberoftheEditorialBoard,ordirectlytothemanaging editoratSpringer: Dr.ChristianCaron SpringerHeidelberg PhysicsEditorialDepartmentI Tiergartenstrasse17 69121Heidelberg/Germany [email protected] Arnab Das Bikas K. Chakrabarti (Eds.) Quantum Annealing and Related Optimization Methods ABC Editors ArnabDas BikasK.Chakrabarti SahaInstituteofNuclearPhysics CentreforAppliedMathematics andComputationalScience Bidhannagar1/AF 700064Kolkata,India E-mail:[email protected] [email protected] ArnabDas,BikasK.Chakrabarti,QuantumAnnealingandRelatedOptimizationMethods, Lect.NotesPhys.679(Springer,BerlinHeidelberg2005),DOI10.1007/b135699 LibraryofCongressControlNumber:2005930442 ISSN0075-8450 ISBN-10 3-540-27987-3SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-27987-7SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springeronline.com (cid:1)c Springer-VerlagBerlinHeidelberg2005 PrintedinTheNetherlands Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:bytheauthorusingaSpringerLATEXmacropackage Printedonacid-freepaper SPIN:11526216 54/TechBooks 543210 Preface Quantum annealing employs quantum fluctuations in frustrated systems or networks to anneal the system down to its ground state or to its minimum coststate,tuningthequantumfluctuationdowntozeroeventually.Oftenthis can be more effective in multivariable optimization problems, over classical annealing performed utilizing tunable thermal fluctuations. The effectiveness comesfromthefactthatunlikeinclassicalannealing,wherethesystemscales the individual barrier heights by utilizing thermal fluctuations, in quantum annealing, fluctuations can help tunneling through these (even infinite but narrow) barriers. Apart from the recent theoretical demonstrations, this has been demonstrated experimentally. In this book, we discuss the problems and the recent achievements in de- tail. This book grew out of an international workshop on quantum annealing, held in March 2004 in Kolkata under the auspices of the Centre for Applied Mathematics and Computational Science, Saha Institute of Nuclear Physics, India. With contributions from all the leading scientists/groups involved in its development so far, this first ever book on quantum annealing is expected to become an invaluable primer and also a guidebook for all researchers in this important field. Thebookisdividedintothreeparts.Inthefirstpart,tutorialmaterialsare introduced.B.K.ChakrabartiandA.DasintroducethetransverseIsingmodel andquantumMonteCarlotechniques,followingwhichmostofthetheoretical studies on quantum annealing have been made so far. The decomposition of exponential operators used for the Suzuki–Trotter classical mapping in quantum Monte Carlo techniques is discussed in detail by N. Hatano and M. Suzuki. Latest quantum Monte Carlo and other numerical investigations and developmentsinquantumspinglassesarereviewedbyH.Rieger.Thequestion of ergodicity and consequent replica symmetry restoration in quantum spin glassesandferroelectricglasses,experimentalindicationsincluded,isreviewed by J.-J. Kim. A. Fisher reviewes the theory of quantum systems coupled to noisy condensed-phase environments and describes how to tailor response functions so as to optimize the coherent evolution of the system. VI Preface In the next part, quantum annealing techniques are developed and em- ployed. G. Aeppli and T.F. Rosenbaum describe the experimental realization where the ground state of a glassy sample can be reached faster by tun- ing the external field (inducing changes in the tunneling field) rather than by tuning the temperature. D. Battaglia, L. Stella, O. Zagordi, G. Santoro, and E. Tosatti discuss the effectiveness of quantum annealing algorithms in solving hard computational problems such as the traveling salesman problem or a satisfiability problem and also in solving some very simple illustrative problems for a basic comparative study with thermal annealing. S. Suzuki and M. Okada investigate the prospect of adiabatic quantum annealing us- ing real-time quantum evolution. A. Das and B.K. Chakrabarti discuss the application of quantum annealing in a kinetically constrained system and in an infinite range quantum spin glass. J.-I. Inoue reviewes the applicability of quantum annealing techniques in restoring informations and images after transportation through corrupted channels. In the last part some of the classical optimization studies are reviewed and discussed. H. Rieger reviewes the classical algorithms for solving various combinatorial optimization problems. P. Sen and P.K. Das discuss classical annealing in the context of the ANNNI model and make a comparative study with quantum annealing in the same system. V. Martin-Mayor reviewes the problem of annealing and relaxation in the context of classical glasses and supercooled liquids. Withthesefirsthandanddetailedreviewsbythepoineersinthisfield,this bookonananalogversionofquantumcomputation,wehope,willimmediately inspire further research and development. We are extremely grateful to all the contributors for excellent support and cooperation. We are also grateful to J. Zittartz for his encouragement regarding the publication of this lecture note volume. Kolkata Arnab Das May, 2005 Bikas K. Chakrabarti Contents Part I Tutorial: Introductory Material Transverse Ising Model, Glass and Quantum Annealing Bikas K. Chakrabarti, Arnab Das .................................. 3 1 Introduction ................................................. 3 2 Transverse Ising Model (TIM) ................................. 4 3 Mean Field Theory (MFT) .................................... 5 4 Dynamic Mode-Softening Picture............................... 8 5 Suzuki-Trotter Formalism ..................................... 9 6 Classical Spin Glasses: A Summary ............................. 12 7 Quantum Spin Glasses ........................................ 14 7.1 Models ................................................. 15 7.2 Replica Symmetry in Quantum Spin Glasses ................ 18 8 Quantum Annealing .......................................... 21 8.1 Multivariable Optimization and Simulated Annealing ........ 21 8.2 Ergodicity of Quantum Spin Glasses and Quantum Annealing . 22 8.3 Quantum Annealing in Kinetically Constrained Systems ...... 24 9 Summary and Discussions ..................................... 25 10 Appendix ................................................... 26 References ...................................................... 35 Finding Exponential Product Formulas of Higher Orders Naomichi Hatano, Masuo Suzuki................................... 37 1 Introduction ................................................. 37 2 Why Do We Need the Exponential Product Formula?............. 38 3 Why is the Exponential Product Formula a Good Approximant? ........................................ 40 3.1 Example: Spin Precession................................. 42 3.2 Example: Symplectic Integrator ........................... 43 4 Fractal Decomposition ........................................ 45 VIII Contents 5 Time-Ordered Exponential .................................... 47 6 Quantum Analysis – Towards the Construction of General Decompositions .................................... 50 6.1 Operator Differential ..................................... 51 6.2 Inner Derivation......................................... 52 6.3 Differential of Exponential Operators....................... 54 6.4 Example: Baker-Campbell-Hausdorff Formula ............... 55 6.5 Example: Ruth’s Formula................................. 57 6.6 Example: Perturbational Composition ...................... 59 7 Summary.................................................... 61 8 Appendix ................................................... 62 References ...................................................... 67 Quantum Spin Glasses Heiko Rieger .................................................... 69 1 Introduction ................................................. 69 2 Random Transverse Ising Models in Finite Dimensions ............ 70 2.1 Random Transverse Ising Chain and the Infinite Randomness Fixed Point ................... 71 2.2 Diluted Ising Ferromagnet in a Transverse Field ............. 75 2.3 Higher Dimensional Random Bond Ferromagnets in a Transverse Field ..................................... 76 2.4 Quantum Ising Spin Glass in a Transverse Field ............. 78 3 Mean-Field Theory for Quantum Ising Spin Glasses............... 79 3.1 Quantum Phase Transition................................ 79 3.2 Dissipative Effects ....................................... 83 3.3 Off Equilibrium Dynamics ................................ 86 4 Heisenberg Quantum Spin Glasses.............................. 88 4.1 Finite Dimensions ....................................... 88 4.2 Mean-Field Model ....................................... 95 References ...................................................... 97 Ergodicity, Replica Symmetry, Spin Glass and Quantum Phase Transition Jong-Jean Kim ..................................................101 1 Introduction .................................................101 2 Overview of Spin Glass........................................102 3 Ergodicity...................................................107 4 Replica Symmetry............................................111 5 Glass Transition..............................................116 6 Quantum Phase Transition ....................................121 7 Quantum Spin Glass..........................................123 References ......................................................126 Contents IX Decoherence and Quantum Couplings in a Noisy Environment Andrew Fisher...................................................131 1 Qubits Coupled to a Bath .....................................131 1.1 Quantum Operations.....................................131 1.2 Examples...............................................133 1.3 The Lindblad Equation...................................134 1.4 The Markovian Weak-Coupling Limit ......................137 1.5 Good Qubits – the Rotating Wave Approximation ...........140 1.6 The Quantum Optical Master Equation ....................142 1.7 Bad Qubits–Quantum Brownian Motion ....................144 1.8 Simplifications for a Harmonic Environment.................145 1.9 Brownian Motion with Ohmic Dissipation...................147 1.10 The Fluctuation-Dissipation Theorem and the Link Between Coherent and Incoherent Evolution ................149 1.11 Irreducible Decoherence and Decoherence-Free Subspaces .....151 2 Scaling Transformations for Partially Coherent Dynamics ...............................151 2.1 Scaling for Thermodynamic Properties .....................151 2.2 Scaling the Liouvillian....................................152 3 Quantum Gates via Optical Excitation..........................153 3.1 Advantages of Localised States ............................153 3.2 The UCL Project ........................................153 4 Conclusions..................................................154 References ......................................................154 Part II Quantum Annealing: Basics and Applications Experiments on Quantum Annealing Gabriel Aeppli, Thomas F. Rosenbaum..............................159 1 Introduction .................................................159 2 System with a Complex Free Energy Surface and Tuneable Quantum Fluctuations ...........................160 3 Demonstration of Domain Wall Tunnelling as the Dominant Mechanism for Low Temperature Magnetic Relaxation ......................163 4 Comparing Quantum and Thermal ‘Computations’ ...............165 5 Conclusions..................................................168 References ......................................................169 Deterministic and Stochastic Quantum Annealing Approaches Demian Battaglia, Lorenzo Stella, Osvaldo Zagordi, Giuseppe E. Santoro and Erio Tosatti ..............................171 1 Introduction .................................................171 X Contents 2 Deterministic Approaches on the Continuum.....................173 2.1 The Simplest Barrier: A Double-Well Potential ..............175 2.2 Other Simple One-Dimensional Potentials with Many Minima .181 3 Role of Disorder, and Landau-Zener Tunneling ...................183 4 Path Integral Monte Carlo Quantum Annealing ..................184 4.1 Path Integral Monte Carlo: Introduction....................184 4.2 PIMC-QA Applied to Combinatorial Optimization Problems ..186 4.3 PIMC-QA and 3-SAT: Lessons from a Hard Case ............192 4.4 PIMC-QA of a Double-Well: Lessons from a Simple Case .....199 5 Beyond Naive Local Search ....................................201 5.1 Focusing in 3-SAT and GFMC Quantum Annealing ..........201 5.2 Message-Passing Optimization.............................202 6 Summary and Conclusions.....................................203 References ......................................................204 Simulated Quantum Annealing by the Real-time Evolution Sei Suzuki, Masato Okada.........................................207 1 Introduction .................................................207 2 Formulation and Mechanism of Quantum Annealing ..............210 2.1 Formulation of Quantum Annealing ........................210 2.2 Adiabatic Evolution of Quantum States ....................212 3 Residual Energies ............................................223 3.1 Simulations for Small-Sized Problems ......................223 3.2 Analytic Considerations ..................................228 3.3 Discussion ..............................................229 4 A method of Simulation for Large-Sized Problems ................231 4.1 Real-Time Evolution by Means of DMRG...................232 4.2 Results of Simulation.....................................234 4.3 Comments ..............................................236 5 Conclusion ..................................................236 References ......................................................237 Quantum Annealing of a ±J Spin Glass and a Kinetically Constrained System Arnab Das, Bikas K. Chakrabarti ..................................239 1 Introduction .................................................239 2 Quantum Annealing of ±J Ising Spin Glass at Infinite Dimension .........................................241 2.1 Model..................................................241 2.2 The Zero Temperature Quantum Monte Carlo Method Used ..242 2.3 Results and Discussions ..................................247 3 Quantum Annealing in a Kinetically Constrained System ............................248 3.1 Model..................................................250

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.