ebook img

Quantum algorithm for linear differential equations with exponentially improved dependence on precision PDF

0.21 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum algorithm for linear differential equations with exponentially improved dependence on precision

Quantum algorithm for linear differential equations with exponentially improved dependence on precision DominicW. Berry ∗ Andrew M.Childs†,‡ Aaron Ostrander‡,§ GuomingWang ‡ 7 1 0 2 b Abstract e F Wepresentaquantumalgorithmforsystemsof(possiblyinhomogeneous)linearordinarydifferentialequations withconstantcoefficients. Thealgorithmproducesaquantumstatethatisproportional tothesolutionatadesired 7 final time. The complexity of the algorithm is polynomial in the logarithm of the inverse error, an exponential 1 improvementoverpreviousquantumalgorithmsforthisproblem.Ourresultbuildsuponrecentadvancesinquantum linearsystemsalgorithmsbyencodingthesimulationintoasparse,well-conditionedlinearsystemthatapproximates ] h evolutionaccordingtothepropagatorusingaTaylorseries.Unlikewithfinitedifferencemethods,ourapproachdoes p notrequireadditionalhypothesestoensurenumericalstability. - t n a 1 Introduction u q OneoftheoriginalmotivationsfordevelopingaquantumcomputerwastoefficientlysimulateHamiltoniandynamics, [ i.e.,differentialequationsoftheform d~x =A~xwhereAisanti-Hermitian.GivenasuitabledescriptionofA,acopyof dt 2 theinitialquantumstate x(0) ,andanevolutiontimeT,thegoalistoproduceaquantumstatethatisε-closetothe v | i finalstate x(T) . Thefirstalgorithmsforthisproblemhadcomplexitypolynomialin1/ε[13,2,10,4]. Subsequent 4 | i 8 workgaveanalgorithmwithcomplexitypoly(log(1/ε))—anexponentialimprovement—whichisoptimalinablack- 6 boxmodel[5].Morerecentworkhasstreamlinedthesealgorithmsandimprovedtheirdependenceonotherparameters 3 [6,7,15,8,14,16]. 0 WhileHamiltoniansimulationhasbeenafocusofquantumalgorithmsresearch,themoregeneralproblemofsim- 1. ulatinglineardifferentialequationsoftheform d~x =A~x+~bforarbitrary(sparse)Aislesswellstudied.Reference[3] dt 0 solvesthisproblemusingaquantumlinearsystemsalgorithm(QLSA)toimplementlinearmultistepmethods,which 7 representthedifferentialequationswithasystemoflinearequationsbydiscretizingtime. Thecomplexityofthisap- 1 proachispoly(1/ε). ConsideringtherecentimprovementstothecomplexityofHamiltoniansimulation,itisnatural : v toaskwhetherlineardifferentialequationscanbesolvedmoreefficientlyasafunctionofε. i X HamiltoniansimulationisacentralcomponentoftheQLSA,andthetechniquesunderlyingpoly(log(1/ε))Hamil- tonian simulation have been adapted to give a QLSA with complexity poly(log(1/ε)) [11]. However, even if this r a improvedQLSA is used to implementthe algorithmof Ref. [3], the overallcomplexityis still poly(1/ε), since the multistepmethoditselfisasignificantsourceoferror. In a similar vein, the QLSA of Ref. [12] has poly(1/ε) complexity even when using a Hamiltonian simulation algorithmwithpoly(log(1/ε))complexity,simplybecausephaseestimationhascomplexitypoly(1/ε).Reference[11] provides a QLSA with poly(log(1/ε)) complexity by avoiding phase estimation and instead directly inverting the linearsystemusingalinearcombinationofunitaries(LCU).Thus,onemightconsiderrealizingthesolutionof d~x = dt A~x+~basalinearcombinationofunitaries. Unfortunately,inthegeneralcasewhereAisnotanti-Hermitian,thebest implementationofthisapproachthatweareawareofhasanexponentiallysmallsuccessprobability. ∗DepartmentofPhysicsandAstronomy,MacquarieUniversity †DepartmentofComputerScienceandInstituteforAdvancedComputerStudies,UniversityofMaryland ‡JointCenterforQuantumInformationandComputerScience,UniversityofMaryland §DepartmentofPhysics,UniversityofMaryland 1 In this paper, we circumventthese limitations and present a quantum algorithm for linear differentialequations withcomplexitypoly(log(1/ε)),anexponentialimprovementoverRef.[3]. AsinRef.[3],ourapproachappliesthe QLSA.However,insteadofusingalinearmultistepmethod,weencodeatruncationoftheTaylorseriesofexp(At), thepropagatorforthedifferentialequation,intoalinearsystem. Sinceiteffectivelyimplementsalinearcombination ofoperations,ourapproachisconceptuallysimilartoquantumsimulationvialinearcombinationsofunitaries,butwe achievesignificantlybetterperformancebyconstructingthislinearcombinationstepwisethroughasystemoflinear equations.ThisalternativetodirectapplicationofLCUmethodsmightbeadvantageousforotherquantumalgorithms. In addition to scaling well with the simulation error, our algorithm has favorable performance as a function of other parameters. The complexity is nearly linear in the evolution time, which is a quadratic improvement over Ref. [3] and is nearly optimal [4]. The complexity is also nearly linear in the sparsity of A and in a parameter characterizing the decay of the solution vector. The latter dependence is necessary since producing a normalized versionofasubnormalizedsolutionvectorisequivalenttopostselection,whichiscomputationallyintractable[1],as discussed furtherin Section8. Alongsimilar lines, we assume thattheeigenvaluesof A havenon-positiverealpart sinceitisintractabletosimulateexponentiallygrowingsolutions.(ThisimprovesuponRef.[3],wheretheeigenvalues λ of A must satisfy arg( λ) α for some constant α dependingon the stability of the multistep method.) For a | − |≤ precisestatementofthemainresult,seeTheorem9. This paper is organizedas follows. Section 2 describes how we encode the solution of a system of differential equationsintoasystemoflinearequations. Thefollowingthreesectionsanalyzepropertiesofthissystem: Section3 bounds its condition number, Section 4 analyzes how well it approximates the differential equation, and Section 5 shows that a measurement of its solution vector provides a solution of the differential equation with appreciable probability. In Section 6 we explain how to prepare the state that is input to the QLSA using black boxes for the initialconditionandinhomogeneoustermofthedifferentialequation. Weformallystateandproveourmainresultin Section7. Finally,weconcludeinSection8withadiscussionoftheresultandsomeopenproblems. 2 Constructing the Linear System AsinRef.[3]weconsideradifferentialequationoftheform d~x =A~x+~b (1) dt whereAand~baretime-independent.Thishastheexactsolution ~x(t)=exp(At)~x(0)+(exp(At) I)A 1~b. (2) − − Define k zj T (z):= ∑ exp(z) (3) k j! ≈ j=0 and k zj 1 S (z):= ∑ − (exp(z) 1)z 1 (4) k − j! ≈ − j=1 wheretheapproximationsholdforlargek. Thenforshortevolutiontimeh(namelyh 1/ A ,where denotesthe ≤ k k k·k spectralnorm)andlargek,wecanapproximatethesolutionby ~x(h) T (Ah)~x(0)+S (Ah)h~b. (5) k k ≈ Thisapproximatesolutioncanbeusedinturnasaninitialconditionforanotherstepofevolution,andwecanrepeat thisprocedureasdesiredforatotalnumberofstepsm. Weencodethisprocedureinalinearsystemusingthefollowingfamilyofmatrices. 2 Definition1. LetAbeanN Nmatrix,andletm,k,p Z+. Define × ∈ d m 1 k C (A):= ∑ j j I ∑− ∑ i(k+1)+j i(k+1)+j 1 A/j m,k,p | ih |⊗ − | ih − |⊗ j=0 i=0 j=1 m 1 k d ∑− ∑ (i+1)(k+1) i(k+1)+j I ∑ j j 1 I, (6) − | ih |⊗ − | ih − |⊗ i=0 j=0 j=d p+1 − whered:=m(k+1)+p,andIistheN Nidentitymatrix. × Nowconsiderthelinearsystem m 1 C (Ah)x = 0 x +h ∑− i(k+1)+1 b , (7) m,k,p in | i | i| i | i| i i=0 where x , b CN andh R+. ThefirstregisterlabelsanaturalblockstructureforC . Forexample,thesystem in m,k,p C2,3,2(A|h)i|xi| =i∈|0i|xini+h∑∈1i=0|4i+1i|biisasfollows: I x in | i Ah I hb −   | i Ah/2 I 0 −  Ah/3 I   0   −     I I I I I   0   − − − −    C2,3,2(Ah)x = Ah I x =hb . (8) | i  − | i  | i  Ah/2 I   0   −     Ah/3 I   0   −     I I I I I   0   − − − −     I I   0   −     I I  0   −        AfterperformingmstepsoftheevolutionapproximatedwithaTaylorseriesoforderk,thesolutioniskeptconstant for psteps. Thisensuresasignificantprobabilityofobtainingthesolutionatthefinaltime, similarlyasinRef.[3]. NotethatC (Ah)isnonsingular,sinceitisalower-triangularmatrixwithnonzerodiagonalentries. IfN=1,then m,k,p C (Ah)isa(d+1) (d+1)matrix. m,k,p × ThesolutionofEq.(7)is m 1 x =C (Ah) 1 0 x +h ∑− i(k+1)+1 b , (9) m,k,p − in | i "| i| i i=0| i| i# whichcanbewrittenas m 1 k p x = ∑− ∑ i(k+1)+j x +∑ m(k+1)+j x (10) i,j m,j | i | i | i i=0 j=0 j=0 (cid:12) (cid:11) (cid:12) (cid:11) forsome x CN. BythedefinitionofC (Ah),the(cid:12)se x ssatisfy (cid:12) i,j m,k,p i,j ∈ (cid:12)(cid:12) (cid:11) x0,0 = xin , (cid:12)(cid:12) (cid:11) (11) | i | i k x = ∑ x , 1 i m, (12) i,0 i 1,j | i − ≤ ≤ j=0 (cid:12) (cid:11) x =Ah(cid:12)x +hb , 0 i<m, (13) i,1 i,0 | i | i | i ≤ x =(Ah/j) x , 0 i<m, 2 j k, (14) i,j i,j 1 − ≤ ≤ ≤ (cid:12)xm,j(cid:11)= xm,j 1(cid:12), (cid:11) 1 j p. (15) (cid:12) − (cid:12) ≤ ≤ (cid:12) (cid:11) (cid:12) (cid:11) (cid:12) (cid:12) 3 Fromtheseequations,weobtain x = x , (16) 0,0 in | i | i x =((Ah)j/j!)x +((Ah)j 1/j!)hb , 1 j k, (17) 0,j 0,0 − | i | i ≤ ≤ x =T (Ah)x +S (Ah)hb (cid:12) 1,0(cid:11) k 0,0 k (cid:12)| i | i | i exp(Ah)x +(exp(Ah) I)A 1 b , (18) in − ≈ | i − | i x1,j =((Ah)j/j!)x1,0 +((Ah)j−1/j!)hb , 1 j k, (19) | i | i ≤ ≤ x =T (Ah)x +S (Ah)hb (cid:12) 2,0(cid:11) k 1,0 k (cid:12)| i | i | i exp(2Ah)xin +(exp(2Ah) I)A−1 b , (20) ≈ | i − | i . . . x =T (Ah)x +S (Ah)hb m 1,0 k m 2,0 k | − i | − i | i exp(Ah(m 1))x +(exp(Ah(m 1)) I)A 1 b , (21) in − ≈ − | i − − | i x =((Ah)j/j!)x +((Ah)j 1/j!)hb , 1 j k, (22) m 1,j m 1,0 − − | − i | i ≤ ≤ x =T (Ah)x +S (Ah)hb (cid:12) m,0(cid:11) k m 1,0 k (cid:12) | i | − i | i exp(Ahm)x +(exp(Ahm) I)A 1 b , (23) in − ≈ | i − | i x = x m,j m,0 | i (cid:12) (cid:11) exp(Ahm)xin +(exp(Ahm) I)A−1 b , 1 j p. (24) (cid:12) ≈ | i − | i ≤ ≤ Intheseapproximations,weassumekissufficientlylargethatwecanneglectthetruncationerrors T (Ah) exp(Ah) k and S (Ah)h (exp(Ah) I)A 1 (we make this more precise in Section 4). Note that x (dkefined b−y Eq. (10)k) k − − − | i includesapiecethatcanbeinterpretedasthehistorystateoftheevolution (cid:13) (cid:13) (cid:13) (cid:13) d~x =A~x+~b (25) dt withtheinitialcondition~x(0)=~x . Moreprecisely, x isagoodapproximationofthesystem’sstateattimeih,for in i,0 | i anyi 0,1,...,m . Furthermore, x = x = = x isagoodapproximationof m,0 m,1 m,p ∈{ } | i | i ··· | i ~x(t)=exp(At)~x +(exp(At) I)A 1~b (26) in − − fort=mh. Ifwemeasuredthefirstregisterofthestate x / x inthestandardbasis,wewouldobtainthestate x / x i,j i,j | i k| ik for random i,j. By choosing a large p, we can ensure there is a high probability of obtaining x / x , m,0 m,0 | (cid:12) i(cid:11)k(cid:13)|(cid:12) i(cid:11)k(cid:13) xm,1 / xm,1 , ..., or xm,p / xm,p (as we show in Section 5). Then this probability can be raise(cid:12)d to Ω(cid:13)((cid:12)1) b(cid:13)y | i k| ik | i k| ik using amplitude amplification (or by classical repetition). This is how we prepare a state close to~x(t)/ ~x(t) for k k t=mh. NotethatthestatewegenerateisnotofthesameformasthehistorystateinRef.[3],whichonlyencodes~x(t)at intermediatetimes. Thesolutionofourlinearsystemnotonlyencodes~x(t)atintermediatetimes(via x )butalso i,0 | i encodes((Ah)j/j!)~x(t)+((Ah)j 1/j!)h~batintermediatetimes(via x ). − i,j | i To analyze the performance of this approach to solving differential equations, we establish three properties of thissystem oflinearequations. First, since the complexityofthe bestknownQLSAsgrowslinearlywithcondition number(andsublinearcomplexityisimpossibleunlessBQP=PSPACE[12]), weanalyzetheconditionnumberof C (Section3). Second,weshowthatthesolutionofthelinearsystemincludesapiecethatisclosetothesolution m,k,p oftheassociateddifferentialequation(Section4).Third,weshowthatthispiececanbeobtainedfromameasurement thatsucceedswithappreciableprobability(Section5). 4 3 Condition Number In this section, we upperboundthe conditionnumberof the matrixC (A) undermild assumptionsaboutA. We m,k,p beginwithatechnicallemmathatupperboundsthenormsofthecolumnsoftheinverseofthismatrix. Lemma2. Letλ Csuchthat λ 1andRe(λ) 0. Letm,k,p Z+ suchthatk 5and(k+1)! 2m,andlet ∈ | |≤ ≤ ∈ ≥ ≥ d=m(k+1)+p.Thenforanyn,l 0,1,...,d , ∈{ } C (λ) 1 l 1.04eI (2)(m+p) (27) m,k,p − 0 | i ≤ withI0(2)<2.28amodifiedBesselfun(cid:13)(cid:13)ctionofthefirs(cid:13)(cid:13)tkinpd,and nCm,k,p(λ)−1 l √1.04e. (28) h | | i ≤ (cid:12) (cid:12) (cid:12) (cid:12) Proof. RecallthedefinitionsofT (z)andS (z)inEqs.(3)and(4),respectively.Wealsodefine k k k b!zj b T (z):= ∑ − (29) b,k j! j=b forb k. ≤ Fixanyl 0,1,...,d . Supposethesolutionofthelinearsystem ∈{ } C (λ)x = l (30) m,k,p | i | i is m 1 k p x = ∑− ∑x i(k+1)+j +∑x m(k+1)+j (31) i,j m,j | i | i | i i=0 j=0 j=0 forsomex C. BythedefinitionofC (λ),thex sshouldsatisfy i,j m,k,p i,j ∈ k x ∑x =δ , 1 i m, (32) i,0 i 1,j i(k+1),l − − ≤ ≤ j=0 x (λ/j)x =δ , 0 i<m, 1 j k, (33) i,j i,j 1 i(k+1)+j,l − − ≤ ≤ ≤ x x =δ , 1 j p, (34) m,j m,j 1 m(k+1)+j,l − − ≤ ≤ whereδ =1ifi= j,and0otherwise. i,j Weconsiderthecases0 l<m(k+1)andm(k+1) l dseparately. ≤ ≤ ≤ Case1: 0 l<m(k+1). Supposel=a(k+1)+bforsome0 a<mand0 b k. Inthiscase,Eq.(34) • ≤ ≤ ≤ ≤ implies x =0, 0 i<a, 0 j k, (35) i,j ≤ ≤ ≤ x =0, 0 j<b, (36) a,j ≤ x =b!λj b/j!, b j k, (37) a,j − ≤ ≤ x =T (λ), (38) a+1,0 b,k x =(λj/j!)x , 1 j k, (39) a+1,j a+1,0 ≤ ≤ x =T (λ)x =T (λ)T (λ), (40) a+2,0 k a+1,0 k b,k . . . x =T (λ)x =(T (λ))m a 1T (λ), (41) m,0 k m 1,0 k − − b,k − 5 x =x =(T (λ))m a 1T (λ), 1 j p. (42) m,j m,0 k − − b,k ≤ ≤ Since λ 1,foranyb j k,wehave | |≤ ≤ ≤ xa,j =b!λ j−b/j! b!/j! 1. (43) | | ≤ ≤ (cid:12) (cid:12) Furthermore,since λ 1andRe(λ) (cid:12)0,b(cid:12)yLemma10andLemma11inAppendixA,wehave | |≤ ≤ 1 1 T (λ) 1+ 1+ , (44) k | |≤ (k+1)! ≤ 2m T (λ) √1.04. (45) b,k ≤ Consequently,wehave (cid:12) (cid:12) (cid:12) (cid:12) x = T (λ)i a 1T (λ) (1+1/2m)m√1.04 √1.04e, a+1 i m, (46) i,0 k − − b,k | | ≤ ≤ ≤ ≤ (cid:12) (cid:12) and (cid:12) (cid:12) x = (λj/j!)x x √1.04e, a+1 i m, 1 j k. (47) i,j i,0 i,0 ≤| |≤ ≤ ≤ ≤ ≤ Itfollowsthat (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) x = x √1.04e, 0 j p. (48) m,j m,0 | |≤ ≤ ≤ (cid:12) (cid:12) Usingthesefacts,weobtain (cid:12) (cid:12) m 1 k p x 2= ∑− ∑ x 2+∑ x 2 i,j m,j k| ik i=0 j=0 j=0 (cid:12) (cid:12) (cid:12) (cid:12) = ∑k b!λ(cid:12)j b/(cid:12)j! 2+(cid:12)m∑−1(cid:12)∑k (λj/j!)x 2+(p+1)x 2 − i,0 m,0 | | j=b i=a+1j=0 (cid:12) (cid:12) (cid:12) (cid:12) ∑k ((cid:12)(cid:12)b!/j!)2+(cid:12)(cid:12)m∑−1 ∑k (1/j(cid:12)!)2 x 2+((cid:12)p+1)x 2 i,0 m,0 ≤ | | | | j=b i=a+1j=0 k m 1 k ∑(b!/j!)2+1.04e ∑− ∑(1/j!)2+1.04e(p+1) ≤ j=b i=a+1j=0 I (2)+1.04eI (2)(m a 1)+1.04e(p+1) 0 0 ≤ − − 1.04eI (2)(m+p), (49) 0 ≤ whereinthefifthstepweusethefacts k ∞ ∑(1/j!)2 ∑(1/j!)2=I (2), (50) 0 ≤ j=0 j=0 k k b 1 1 4 ∑(b!/j!)2 ∑− 1/(b+1)2s =1+ <I (2), 1 b k. (51) ≤ ≤ 1 (b+1) 2 b(b+2) ≤ 3 0 ≤ ≤ j=b s=0 − − Case2:m(k+1) l d. Supposel=m(k+1)+bforsome0 b p. Inthiscase,Eq.(34)implies • ≤ ≤ ≤ ≤ x =0, 0 i<m, 0 j k, (52) i,j ≤ ≤ ≤ x =0, 0 j<b, (53) m,j ≤ x =1, b j p. (54) m,j ≤ ≤ 6 Itfollowsthat m 1 k p x 2= ∑− ∑ x 2+∑ x 2 i,j m,j k| ik i=0 j=0 j=0 (cid:12) (cid:12) (cid:12) (cid:12) =p b+(cid:12)1 (cid:12) (cid:12) (cid:12) − p+1. (55) ≤ Inbothoftheabovecases,wehave x 1.04eI (2)(m+p)and nx √1.04eforanyn 0,1,...,d , 0 k| ik≤ |h | i|≤ ∈{ } asclaimed. p Nowwearereadytoupperboundthenormoftheinverseofthematrix. Lemma 3. Let A =VDV 1 be a diagonalizable matrix, where D = diag(λ ,λ ,...,λ ) satisfies λ 1 and − 0 1 N 1 i Re(λ) 0fori 0,1,...,N 1 .Letm,k,p Z+ suchthatk 5and(k+1)! 2m. Th−en | |≤ i ≤ ∈{ − } ∈ ≥ ≥ C (A) 1 3κ √k(m+p), (56) m,k,p − V ≤ whereκV = V V−1 istheconditionn(cid:13)(cid:13)umberofV.(cid:13)(cid:13) k k· Proof. Forconven(cid:13)ience(cid:13),wewilldropthesubscriptsm,k,p,anduseC()todenoteC (). WediagonalizeC(A)as (cid:13) (cid:13) · m,k,p · C(A)=V˜C(D)V˜ 1, (57) − where V˜ := ∑dj=0|jihj|⊗V has condition number κV˜ = κV. Then we may upper bound C(A)−1 in terms of C(D) 1 as − (cid:13) (cid:13) (cid:13) (cid:13) (cid:13)(cid:13) (cid:13)(cid:13) C(A)−1 = V˜C(D)−1V˜−1 (cid:13) (cid:13) (cid:13)V˜ C(D)−1(cid:13) V˜−1 (cid:13) (cid:13)≤(cid:13) · (cid:13)· =(cid:13)(cid:13)C((cid:13)(cid:13)D)(cid:13)(cid:13)−1 ·κV˜.(cid:13)(cid:13) (cid:13)(cid:13) (cid:13)(cid:13) (58) (cid:13) (cid:13) Wehave (cid:13) (cid:13) C(D) 1 ψ C(D) 1 =max − | i (59) − (cid:13) (cid:13) |ψi (cid:13)(cid:13) k|ψik (cid:13)(cid:13) wherewemaximizeoverallstates|ψi∈C((cid:13)d+1)NTh(cid:13)estate|ψicanbewrittenas|ψi=∑dl=0|li|ψliforsome|ψli∈CN. Thenwehave 2 d C(D) 1 ψ 2= ∑C(D) 1 l ψ − − l | i (cid:13)l=0 | i| i(cid:13) (cid:13)(cid:13) (cid:13)(cid:13) (cid:13)(cid:13)(cid:13)(cid:13)(d+1)∑d C(D)−1(cid:13)(cid:13)(cid:13)(cid:13)l ψl 2. (60) ≤ | i| i l=0 (cid:13) (cid:13) (cid:13) (cid:13) Nowlet|ψli=∑Nj=−01ψj,l|jiforsomeψj,l∈C.WithD=∑Nj=−01λj|jihj|,wehaveC(D)=∑Nj=−01C(λj)⊗|jihj|.Hence, byLemma2,weobtain 2 N 1 C(D) 1 l ψ 2= ∑− ψ C(λ ) 1 l j − l j,l j − | i| i (cid:13)j=0 | i| i(cid:13) (cid:13)(cid:13) (cid:13)(cid:13) =(cid:13)(cid:13)(cid:13)(cid:13)N∑−1 ψj,l 2 C(λj)−1 l (cid:13)(cid:13)(cid:13)(cid:13)2 | i j=0 (cid:12) (cid:12) (cid:13) (cid:13) (cid:12) (cid:12) (cid:13) (cid:13) 7 N 1 1.04eI (2)(m+p) ∑− ψ 2 0 j,l ≤ j=0 (cid:12) (cid:12) =1.04eI (2)(m+p) ψ(cid:12) 2.(cid:12) (61) 0 l k| ik UsingthisexpressioninEq.(60)gives d C(D) 1 ψ 2 1.04eI (2)(d+1)(m+p)∑ ψ 2 − 0 l | i ≤ k| ik l=0 (cid:13) (cid:13) (cid:13) (cid:13) =1.04eI (2)(m(k+1)+p+1)(m+p) ψ 2 0 k| ik 6 1.04eI (2)k(m+p)2 ψ 2. (62) 0 ≤ 5× k| ik UsingthisresultinEq.(59)yields C(D) 1 3√k(m+p). (63) − ≤ CombiningthisexpressionwithEq.(58)then(cid:13)givesEq(cid:13).(56),asclaimed. (cid:13) (cid:13) Itremainstoupperboundthenormofthematrix. Lemma4. LetAbeanN Nmatrixsuchthat A 1. Letm,k,p Z+,andk 5. Then × k k≤ ∈ ≥ C (A) 2√k. (64) m,k,p ≤ (cid:13) (cid:13) (cid:13) (cid:13) Proof. ObservethatC:=C (A)canbewrittenasthesumofthreematrices: m,k,p C=C +C +C (65) 1 2 3 where d C := ∑ j j I, (66) 1 | ih |⊗ j=0 m 1 k C := ∑− ∑ (i+1)(k+1) i(k+1)+j I, (67) 2 − | ih |⊗ i=0 j=0 m 1 k d C := ∑− ∑ i(k+1)+j i(k+1)+j 1 A/j ∑ j j 1 I, (68) 3 − | ih − |⊗ − | ih − |⊗ i=0 j=1 j=d p+1 − whered=m(k+1)+p. Onecaneasilycheckthat C =1, C =√k+1,and C =max A ,1 =1(thisis 1 2 3 k k k k k k {k k } trivialforC ,andfollowsdirectlyfromacalculationofC C†andC C† fortheothercases). Consequently, 1 2 2 3 3 C C + C + C 1 2 3 k k≤k k k k k k √k+1+2 ≤ 2√k (69) ≤ asclaimed. CombiningLemma3andLemma4,weobtainthefollowingupperboundontheconditionnumberofC (A): m,k,p Theorem5. LetA=VDV 1beadiagonalizablematrixsuchthat A 1,D=diag(λ ,λ ,...,λ )andRe(λ) 0, − 0 1 N 1 i for i 0,1,...,N 1 . Let m,k,p Z+ such that k 5 andk(kk+≤1)! 2m. Let C :=C −(A), and let κ≤= m,k,p C C ∈C{ 1 bethe−con}ditionnumber∈ofC. Then ≥ ≥ − k k· (cid:13) (cid:13) κ 6κ k(m+p), (70) (cid:13) (cid:13) C≤ V whereκ = V V 1 istheconditionnumberofV. V − k k· (cid:13) (cid:13) (cid:13) (cid:13) 8 4 Solution Error Inthissection,weprovethatthesolutionofthelinearsystemdefinedbyEq.(7)encodesagoodapproximationofthe solutionofthedifferentialequationdefinedbyEq.(25)withtheinitialcondition~x(0)=~x . in Theorem6. LetA=VDV 1 beadiagonalizablematrix, where D=diag(λ ,λ ,...,λ )satisfiesRe(λ) 0for − 0 1 N 1 i i 0,1,...,N 1 . Leth R+ suchthat Ah 1. Let x , b CN, andlet x(t) −be definedby Eq. (2≤6). Let in m∈,k{,p Z+suc−hth}atk 5a∈nd(k+1)! 2mk.Lekt≤x bed|efinied|biy∈Eqs.(9)and(1|0).Tihenforany j 0,1,...,m , i,j ∈ ≥ ≥ ∈{ } x(jh) x (cid:12)2.8κ(cid:11) j( x +mh b )/(k+1)!, (71) j,0 (cid:12) V in | i− ≤ k| ik k| ik whereκV = V V−1 isth(cid:13)(cid:13)econdition(cid:12)(cid:12)num(cid:11)b(cid:13)(cid:13)erofV. k k· Proof. Notethat x(cid:13)(jh)(cid:13)(thesolutionofthedifferentialequation)satisfiestherecurrencerelation |(cid:13) i(cid:13) x((j+1)h) =exp(Ah)x(jh) +(exp(Ah) I)A−1 b , (72) | i | i − | i while x (inthesolutionoftheassociatedlinearsystem)satisfiestherecurrencerelation j,0 (cid:12) (cid:11) x =T (Ah) x +S (Ah)hb . (73) (cid:12) j+1,0 k j,0 k | i RecallthatTk(λ)=∑kj=0λj!j andSk(λ)=(cid:12)(cid:12)∑kj=1(cid:11)λjj−!1. Inadd(cid:12)(cid:12)tion(cid:11),wehave|x(0)i=|x0,0i=|xini. Define y(t) :=V 1 x(t) and y =V 1 x . We will give an upperboundon δ := y(jh) y and − i,j − i,j j j,0 | i | i | i− convertit into an upper boundon ε := x(jh) x . Since A=VDV 1, we have exp(Ah)=Vexp(Dh)V 1, (cid:12)j (cid:11) | (cid:12)i−(cid:11) j,0 − (cid:13) (cid:12) (cid:11)(cid:13) − T (Ah)=VT (Dh)V 1,andS (Ah)(cid:12)=VS (Dh)V(cid:12) 1. ThenEq.(72)implies (cid:13) (cid:12) (cid:13) k k − k (cid:13)k − (cid:12) (cid:11)(cid:13) (cid:13) (cid:12) (cid:13) y((j+1)h) =exp(Dh)y(jh) +(exp(Dh) I)D 1 c , (74) − | i | i − | i where c =V 1 b . Meanwhile,Eq.(73)implies − | i | i y =T (Dh) y +S (Dh)hc . (75) j+1,0 k j,0 k | i Inaddition,wehave y(0) = y0,0 = y(cid:12)(cid:12)in :=V(cid:11)−1 xin . (cid:12)(cid:12) (cid:11) | i | i | i | i Now since Re(λ) 0 for any i 0,1,...,N 1 , we have exp(Dh) 1. Moreover, since Ah 1, we i ≤ ∈{ − } k k≤ k k≤ have λh 1 for any i 0,1,...,N 1 . Then since Re(λh) 0 for any i 0,1,...,N 1 , by Lemma 10 in i i | |≤ ∈{ − } ≤ ∈{ − } AppendixA,weget exp(Dh) T(Dh) 1/(k+1)!, (76) k k − k≤ andbyLemma12inAppendixA,weget S (Dh) (exp(Dh) I)D 1h 1 1/(k+1)!. (77) k − − − − ≤ Theerrorδ = y(jh) y (cid:13) canbeboundedasfollows. N(cid:13)otethatδ =0,andusingthetriangleinequality, j j,0(cid:13) (cid:13) 0 | i− wehave (cid:13) (cid:12) (cid:11)(cid:13) (cid:13) (cid:12) (cid:13) δj+1= exp(Dh)y(jh) +(exp(Dh) I)D−1 c Tk(Dh) yj,0 Sk(Dh)hc | i − | i− − | i (cid:13)exp(Dh)y(jh) Tk(Dh) yj,0 + (exp(Dh) I(cid:12))D−(cid:11)1 c Sk(Dh)h(cid:13)c ≤(cid:13) | i− − (cid:12) | i− (cid:13)| i (cid:13)exp(Dh)y(jh) exp(Dh(cid:12)) yj,(cid:11)0(cid:13) +(cid:13) exp(Dh)yj,0 Tk(Dh)yj,0 (cid:13) ≤(cid:13) | i− (cid:12) (cid:13) (cid:13) | i− | i (cid:13) +(cid:13) (exp(Dh) I)D−1 c S(cid:12)k(Dh(cid:11))(cid:13)hc(cid:13) (cid:13) (cid:13) − | i− (cid:12) (cid:13)| i(cid:13) (cid:13) e(cid:13)xp(Dh) y(jh) yj,0 + exp(D(cid:13)h) Tk(Dh) yj,0 ≤k (cid:13) k | i−| i k (cid:13) − k | i + (exp(Dh(cid:13)) I)D−1 Sk((cid:13)Dh)h c (cid:13) (cid:13) (cid:13) − − (cid:13) k| ik (cid:13) (cid:13) 1 δ (cid:13)+ y +h c .(cid:13) (78) ≤ j(cid:13) (k+1)! j,0 k| ik (cid:13) (cid:2)(cid:13)(cid:12) (cid:11)(cid:13) (cid:3) (cid:13)(cid:12) (cid:13) 9 Thisimplies j δ max y +h c . (79) j i,0 ≤ (k+1)! 0 i jk| ik k| ik (cid:20) ≤≤ (cid:21) Next,wegiveanupperboundonmax y . Fixanyi 0,1,...,m . Thenwehave 0 i m i,0 ≤≤ k| ik ∈{ } yi,0 = i(k+1)Cm,k,p(D)−1 z , (80) | i h | | i wherethebra i(k+1) actsonthefirstregister,and h | m 1 z = 0 y +h ∑− j(k+1)+1 c . (81) in | i | i| i | i| i j=0 Therefore,bythetriangleinequality, m 1 yi,0 i(k+1)Cm,k,p(D)−1 0 yin +h ∑− i(k+1)Cm,k,p(D)−1 j(k+1)+1 c . (82) k| ik≤ h | | i| i h | | i| i j=0 (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) To bound both terms, we consider the general expression i(k+1)C (D) 1 s β for integer s. Let β = m,k,p − h | | i| i | i ∑Nl=−01βl|liforsomeβl ∈C. ThensinceCm,k,p(D)=∑Nl=−01Cm(cid:13),k,p(λl)⊗|lihl|,weget (cid:13) (cid:13) (cid:13) N 1 i(k+1)Cm,k,p(D)−1 s β = ∑− βl i(k+1)Cm,k,p(λl)−1 s l . (83) h | | i| i h | | i| i l=0 Then,byLemma2,wehave N 1 i(k+1)C (D) 1 s β 2= ∑− β 2 i(k+1)C (λ) 1 s 2 m,k,p − l m,k,p l − h | | i| i | | h | | i l=0 (cid:13) (cid:13) (cid:12) (cid:12) (cid:13) (cid:13) N (cid:12)1 (cid:12) 1.04e ∑− β 2 l ≤ | | l=0 =1.04e β 2. (84) k| ik Henceweobtain i(k+1)C (D) 1 0 y √1.04e y , (85) m,k,p − in in h | | i| i ≤ k| ik i(k+1)(cid:13)Cm,k,p(D)−1 j(k+1)+1 c (cid:13) √1.04e c . (86) h (cid:13)| | i| i(cid:13)≤ k| ik (cid:13) (cid:13) Usingthesetwofactsandthe(cid:13)triangleinequality,Eq.(82)implies (cid:13) y √1.04e( y +mh c ). (87) i,0 in k| ik≤ k| ik k| ik Sincethisholdsforanyi 0,1,...,m ,weget ∈{ } max y √1.04e( y +mh c ). (88) i,0 in 0 i mk| ik≤ k| ik k| ik ≤≤ NowusingEqs.(79)and(88),weget δ (√1.04e+1)j( y +mh c )/(k+1)! j in ≤ k| ik k| ik =(√1.04e+1)j V 1 x +mh V 1 b /(k+1)! − in − | i | i (√1.04e+1)j(cid:0)(cid:13)V−1 ( xi(cid:13)n +m(cid:13)h b /(cid:13)((cid:1)k+1)!). (89) ≤ (cid:13) k| (cid:13)ik (cid:13) k| ik (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.