ebook img

Quantum Adversary Lower Bound for Element Distinctness with Small Range PDF

27 Pages·2014·0.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Adversary Lower Bound for Element Distinctness with Small Range

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2014,Article04,pages1–27 http://cjtcs.cs.uchicago.edu/ Quantum Adversary Lower Bound for Element Distinctness with Small Range Ansis Rosmanis∗ Received March5,2014;Revised May12,2014;Published July9,2014 Abstract: The ELEMENT DISTINCTNESS problem is to decide whether each character ofaninputstringisunique. Thequantumquerycomplexityof ELEMENT DISTINCTNESS is known to be Θ(N2/3); the polynomial method gives a tight lower bound for any input alphabet,whileatightadversaryconstructionwasonlyknownforalphabetsofsizeΩ(N2). WeconstructatightΩ(N2/3)adversarylowerboundforELEMENT DISTINCTNESSwith minimalnon-trivialalphabetsize,whichequalsthelengthoftheinput. Thisresultmayhelp toimprovelowerboundsforotherrelatedqueryproblems. 1 Introduction and motivation Background. Inquantumcomputation,oneofthemainquestionsthatweareinterestedinis: What isthequantumcircuitcomplexityofagivencomputationalproblem? Thisquestionishardtoanswer, andsoweconsideranalternativequestion: Whatisthequantumquerycomplexityoftheproblem? For many problems, it is seemingly easier to (upper and lower) bound the number of times an algorithm requirestoaccesstheinputratherthantoboundthenumberofelementaryquantumoperationsrequired by the algorithm. Nonetheless, the study of the quantum query complexity can give us great insights forthequantumcircuitcomplexity. Forexample,aquery-efficientalgorithmfor SIMON’S PROBLEM [26]helpedShortodevelopatime-efficientalgorithmforfactoring[25]. Ontheotherhand, Ω˜(N1/5) and Ω(N1/2) lower bounds on the (bounded error) quantum query complexity of the SET EQUALITY [21]andtheINDEX ERASURE[6]problems,respectively,ruledoutcertainapproachesforconstructing time-efficientquantumalgorithmsforthe GRAPH ISOMORPHISMproblem. ∗SupportedbyMikeandOpheliaLazaridisFellowship,DavidR.CheritonGraduateScholarship,andtheUSARO. Keywordsandphrases: quantumquerycomplexity,adversarybound,elementdistinctness ©2014AnsisRosmanis cbLicensedunderaCreativeCommonsAttributionLicense(CC-BY) DOI:10.4086/cjtcs.2014.004 ANSISROSMANIS Currently, two main techniques for proving lower bounds on quantum query complexity are the polynomialmethoddevelopedbyBeals,Buhrman,Cleve,Mosca,anddeWolf[7],andtheadversary method originally developed by Ambainis [2] in what later became known as the positive adversary method. The adversary method was later strengthened by Høyer, Lee, and Špalek [16] by allowing negativeweightsintheadversarymatrix. Inrecentresults[22,20],Lee,Mittal,Reichardt,Špalek,and Szegedyshowedthat,unlikethepolynomialmethod[3],thegeneral(i.e.,strengthened)adversarymethod cangivetightlowerboundsforallproblems. Thisisastrongincentiveforthestudyoftheadversary method. ElementDistinctnessandCollision. Eventhoughweknowthattightadversary(lower)boundsexist for all query problems, for multiple problems we still do not know how to even construct adversary bounds that would match lower bounds obtained by other methods. For about a decade, ELEMENT DISTINCTNESS and COLLISION wereprimeexamplesofsuchproblems. Givenaninputstringz∈ΣN, the ELEMENT DISTINCTNESS problem is to decide whether each character of z is unique, and the COLLISIONproblemisitsspecialcasegivenapromisethateachcharacterofziseitheruniqueorappears inzexactlytwice. Asonecanthinkofzasafunctionthatmaps{1,2,...,N}toΣ,thealphabetΣisoften alsocalledtherange. The quantum query complexity of these two problems is known. Brassard, Høyer, and Tapp first gaveanO(N1/3)quantumqueryalgorithmforCOLLISION[13]. AaronsonandShithengaveamatching Ω(N1/3)lowerboundforCOLLISIONviathepolynomialmethod,requiringthat|Σ|≥3N/2[1]. Dueto aparticularreductionfromCOLLISIONtoELEMENT DISTINCTNESS,theirlowerboundalsoimpliedan Ω(N2/3)lowerboundforELEMENT DISTINCTNESS,requiringthat|Σ|∈Ω(N2). Subsequently,Kutin (for COLLISION) and Ambainis (for both) removed these requirements on the alphabet size [19, 4]. Finally,AmbainisgaveanO(N2/3)quantumqueryalgorithmforELEMENT DISTINCTNESSbasedona quantumwalk[5],thusimprovingthebestpreviouslyknownO(N3/4)upperbound[14]. Hence,theproofoftheΩ(N2/3)lowerboundforELEMENT DISTINCTNESSwithminimalnon-trivial alphabet size N (and, thus, any alphabet size) consists of three steps: an Ω(N1/3) lower bound for COLLISION,areductionfromanΩ(N1/3)lowerboundforCOLLISIONtoanΩ(N2/3)lowerboundfor ELEMENT DISTINCTNESS withthealphabetsizeΩ(N2),andareductionofthealphabetsize. Inthis paperweprovethesameresultdirectlybyprovidinganΩ(N2/3)generaladversaryboundfor ELEMENT DISTINCTNESSwiththealphabetsizeN. Theproblemsof SET EQUALITY,k-DISTINCTNESS,andk-SUM arecloselyrelatedto COLLISION andELEMENT DISTINCTNESS. SET EQUALITYisaspecialcaseofCOLLISIONgivenanextrapromise that each character of the first half (and, thus, the second half) of the input string is unique. Given a constantk,thek-DISTINCTNESSproblemistodecidewhethertheinputstringcontainssomecharacterat leastk times. Fork-SUM, weassumethatΣisanadditivegroupandtheproblemistodecideifthere existknumbersamongN thatsumuptoaprescribednumber. Recentadversarybounds. Duetothecertificatecomplexitybarrier[30,28],thepositiveweightadver- sarymethodfailstogiveabetterlowerboundforELEMENTDISTINCTNESSthanΩ(N1/2). Andsimilarly, due to the property testing barrier [16], it fails to give a better lower bound for COLLISION than the trivialΩ(1). Recently,BelovsgaveanΩ(N2/3)generaladversaryboundforELEMENT DISTINCTNESS CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 2 QUANTUMADVERSARYLOWERBOUNDFORELEMENTDISTINCTNESSWITHSMALLRANGE withalargeΩ(N2)alphabetsize[8]. Inaseriesofworksthatfollowed,tightgeneraladversarybounds weregivenforthek-SUM[12], CERTIFICATE-SUM[10],andCOLLISIONand SET EQUALITYproblems [11], all of them requiring that the alphabet size is large. Ω(Nk/(k+1)) and Ω(N1/3) lower bounds for k-SUM and SET EQUALITY, respectively, were improvements over the best previously known lower bounds. (TheΩ(N1/3)lowerboundfor SET EQUALITYwasalsoindependentlyprovenbyZhandry[29]; heusedacompletelydifferentmethod,whichdidnotrequireanyassumptionsonthealphabetsize.) The adversary lower bound for a problem is given via the adversary matrix (Section 2.2). The constructionoftheadversarymatrixinalltheserecent(general)adversaryboundsmentionedhasone ideaincommon: theadversarymatrixisextractedfromalargermatrixthathasbeenconstructedusing, essentially,theHammingassociationscheme[15]. Thefactthatweinitiallyembedtheadversarymatrix inthislargermatrixisthereasonbehindtherequirementofthelargealphabetsize. Moreprecisely,dueto thebirthdayparadox,theseadversaryboundsrequirethealphabetΣtobelargeenoughsothatarandomly chosenstringinΣN withconstantprobabilityisanegativeinputoftheproblem. Also, for these problems, all the negative inputs are essentially equally hard. However, for k- DISTINCTNESS,forexample,thehardestnegativeinputsseemtobetheonesinwhicheachcharacter appears k−1 times, and a randomly chosen negative input for k-DISTINCTNESS is such only with a minusculeprobability. ThismightbeareasonwhyanΩ(N2/3)adversaryboundfork-DISTINCTNESS [27] based on the idea of the embedding does not narrow the gap to the best known upper bound, O(N1−2k−2/(2k−1))[9]. (TheΩ(N2/3)lowerboundwasalreadyknownpreviouslyviathereductionfrom ELEMENT DISTINCTNESSattributedtoAaronsonin[5].) Motivation for our work. In this paper we construct an explicit adversary matrix for ELEMENT DISTINCTNESSwiththealphabetsize|Σ|=N (and,thus,anyalphabetsize)yieldingthetightΩ(N2/3) lowerbound. Wealsoprovidecertain“tight”conditionsthateveryoptimaladversarymatrixforELEMENT DISTINCTNESS mustsatisfy,1 thereforesuggestingthateveryoptimaladversarymatrixfor ELEMENT DISTINCTNESSmighthavetobe,insomesense,closetotheadversarymatrixthatwehaveconstructed. The tight Ω(Nk/(k+1)) adversary bound for k-SUM by Belovs and Špalek [12] is an extension of Belovs’Ω(N2/3)adversaryboundfor ELEMENT DISTINCTNESS [8],anditrequires|Σ|∈Ω(Nk). We constructtheadversarymatrixforELEMENT DISTINCTNESSdirectly,withouttheembedding,therefore wedonotrequirethecondition|Σ|∈Ω(N2)asinBelovs’adversarybound. Wehopethatthismighthelp toreducetherequiredalphabetsizeintheΩ(Nk/(k+1))lowerboundfork-SUM. Aswementionedbefore,anadversarymatrixfork-DISTINCTNESSbasedontheideaoftheembed- dingmightnotbeabletogivetightlowerbounds. Ontheotherhand,inourconstructionweonlyassume thattheadversarymatrixisinvariantunderallindexandallalphabetpermutations,andthatissomething we can always do without loss of generality due to the automorphism principle [16]—for ELEMENT DISTINCTNESS,k-DISTINCTNESS,andmanyotherproblems. Hence,duetotheoptimalityofthegeneral adversarymethod,weknowthatonecanconstructatightadversaryboundfork-DISTINCTNESS that satisfiesthesesymmetries,andwehopethatourconstructionforELEMENT DISTINCTNESSmightgive insightsinhowtodothat. 1Assuming,withoutlossofgenerality,thattheadversarymatrixhasthesymmetrygivenbytheautomorphismprinciple. CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 3 ANSISROSMANIS Structureofthepaper. Thispaperisstructuredasfollows. InSection2wepresentthepreliminariesof ourwork,includingtheadversarymethod,theautomorphismprinciple,andthebasicsoftherepresentation theoryofthesymmetricgroup. InSection3weshowthattheadversarymatrixΓcanbeexpressedas alinearcombinationofspecificmatrices. InthissectionwealsopresentClaim3.2,whichstateswhat conditions every optimal adversary matrix for ELEMENT DISTINCTNESS must satisfy; we prove this claimintheappendix. InSection4weshowhowtospecifytheadversarymatrixΓviaitsubmatrixΓ , 1,2 whichwillmaketheanalysisoftheadversarymatrixsimpler. InSection5wepresenttoolsforestimating the spectral norm of the matrix entrywise product of Γ and the difference matrix ∆, a quantity that is i essentialtotheadversarymethod. InSection6weusetheconditionsgivenbyClaim3.2toconstructan adversarymatrixforELEMENT DISTINCTNESSwiththealphabetsizeN,andweshowthatthismatrix indeedyieldsthedesiredΩ(N2/3)lowerbound. WeconcludeinSection7withopenproblems. 2 Preliminaries 2.1 Elementdistinctnessproblem Let N be the length of the input and let Σ be the input alphabet. Let [i,N] = {i,i+1,...,N} and [N]=[1,N]forshort. Givenaninputstringz∈ΣN,theELEMENT DISTINCTNESSproblemistodecide whetherzcontainsacollisionornot,namely,weatherthereexisti,j∈[N]suchthati(cid:54)= jandz =z . We i j onlyconsideraspecialcaseoftheproblemwherewearegivenapromisethattheinputcontainsatmost onecollision. Thispromisedoesnotchangethecomplexityoftheproblem[5]. LetD andD bethesetsofpositiveandnegativeinputs,respectively,thatis,inputswithaunique 1 0 collision and inputs without a collision. If |Σ|<N, then D =0/, and the problem becomes trivial, 0 thereforeweconsiderthecasewhen|Σ|=N. Wehave (cid:18) (cid:19) (cid:18) (cid:19) N |Σ|! N |Σ|! |D |= = N! and |D |= =N!. 1 0 2 (|Σ|−N+1)! 2 (|Σ|−N)! 2.2 Adversarymethod The general adversary method gives optimal bounds for any quantum query problem. Here we only considertheELEMENTDISTINCTNESSproblem,soitsufficestodefinetheadversarymethodfordecision problems. Letusthinkofadecisionproblem pasaBoolean-valuedfunction p:D→{0,1}withdomain D⊆ΣN,andletD = p−1(1)andD = p−1(0). 1 0 Anadversarymatrixforadecisionproblem pisareal|D |×|D |matrixΓwhoserowsarelabeled 1 0 by the positive inputs D and columns by the negative inputs D . Let Γ[[x,y]] denote the entry of Γ 1 0 correspondingtothepairofinputs(x,y)∈D ×D . Fori∈[N],thedifferencematrices∆ and∆ arethe 1 0 i i matricesofthesamedimensionsandthesamerowandcolumnlabelingasΓthataredefinedby (cid:40) (cid:40) 0, ifx =y, 1, ifx =y, i i i i ∆[[x,y]]= and ∆[[x,y]]= i i 1, ifx (cid:54)=y, 0, ifx (cid:54)=y. i i i i CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 4 QUANTUMADVERSARYLOWERBOUNDFORELEMENTDISTINCTNESSWITHSMALLRANGE Theorem2.1(Adversarybound[16,20]). Thequantumquerycomplexityofthedecisionproblem pis Θ(Adv(p)),whereAdv(p)istheoptimalvalueofthesemi-definiteprogram maximize (cid:107)Γ(cid:107) (2.1) subjectto (cid:107)∆ ◦Γ(cid:107)≤1foralli∈[N], i wherethemaximizationisoveralladversarymatricesΓfor p,(cid:107)·(cid:107)isthespectralnorm(i.e.,thelargest singularvalue),and◦istheentrywisematrixproduct. Everyfeasiblesolutiontothesemi-definiteprogram(2.1)yieldsalowerboundonthequantumquery complexity of p. Note that we can choose any adversary matrix Γ and scale it so that the condition (cid:107)∆ ◦Γ(cid:107)≤1holds. Inpractice,weusethecondition(cid:107)∆ ◦Γ(cid:107)∈O(1)insteadof(cid:107)∆ ◦Γ(cid:107)≤1. Alsonote i i i that∆ ◦Γ=Γ−∆ ◦Γ. i i 2.3 Symmetriesoftheadversarymatrix It is known that we can restrict the maximization in Theorem 2.1 to adversary matrices Γ satisfying certainsymmetries. LetS bethesymmetricgroupofafinitesetA,thatis,thegroupwhoseelementsare A allthepermutationsofelementsofAandwhosegroupoperationisthecompositionofpermutations. The automorphismprinciple[16]impliesthat,withoutlossofgenerality,wecanassumethatΓfor ELEMENT DISTINCTNESS is fixed under all index and all alphabet permutations. Namely, index permutations π ∈S andalphabetpermutationsτ ∈S actoninputstringsz∈ΣN inthenaturalway: [N] Σ π ∈S : z=(z ,...,z ) (cid:55)→ z =(cid:0)z ,...,z (cid:1), [N] 1 N π π−1(1) π−1(N) τ ∈S : z=(z ,...,z ) (cid:55)→ zτ =(cid:0)τ(z ),...,τ(z )(cid:1). Σ 1 N 1 N The actions of π and τ commute: we have (z )τ = (zτ) , which we denote by zτ for short. The π π π automorphismprincipleimpliesthatwecanassume Γ[[x,y]]=Γ[[xτ,yτ]] (2.2) π π forallx∈D ,y∈D ,π ∈S ,andτ ∈S . 1 0 [N] Σ Let X∼=R|D1| and Y∼=R|D0| be the vector spaces corresponding to the positive and the negative inputs, respectively. (We can view Γ as a linear operator that maps Y to X.) Let Uτ and Vτ be the π π permutationmatricesthatrespectivelyactonthespacesXandYandthatmapeveryx∈D toxτ and 1 π everyy∈D toyτ. Then(2.2)isequivalentto 0 π UτΓ=ΓVτ (2.3) π π forallπ ∈S ,andτ ∈S . BothU andV arerepresentationsofS ×S . [N] Σ [N] Σ 2.4 Representationtheoryofthesymmetricgroup Letuspresentthebasicsoftherepresentationtheoryofthesymmetricgroup. (Foradetailedstudyofthe representationtheoryofthesymmetricgroup,referto[17,23];forthefundamentalsoftherepresentation theoryoffinitegroups,referto[24].) CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 5 ANSISROSMANIS Uptoisomorphism,thereisone-to-onecorrespondencebetweentheirreps(i.e.,irreduciblerepresen- tations)ofS and|A|-boxYoungdiagrams,andweoftenusethesetwotermsinterchangeably. Weuseζ, A η,andθ todenoteYoungdiagramshavingo(N)boxes,λ,µ,andν todenoteYoungdiagramshavingN, N−1,andN−2boxes,respectively,andρ andσ forgeneralstatementsandotherpurposes. Let ρ (cid:96) M denote that ρ is an M-box Young diagram. For a Young diagram ρ, let ρ(i) and ρ(cid:62)(j) denote the number of boxes in the i-th row and j-th column of ρ, respectively. We write ρ = (ρ(1),ρ(2),...,ρ(r)), where r = ρ(cid:62)(1) is the number of rows in ρ, and, given M ≥ ρ(1), let (M,ρ)beshortfor(M,ρ(1),ρ(2),...,ρ(r)). Wesaythatabox(i,j)ispresentinρ andwrite(i,j)∈ρ ifρ(i)≥ j(equivalently,ρ(cid:62)(j)≥i). The hook-lengthh (b)ofaboxbisthesumofthenumberofboxesontherightfrombinthesamerow(i.e., ρ ρ(i)− j)andthenumberofboxesbelowbinthesamecolumn(i.e.,ρ(cid:62)(j)−i)plusone(i.e.,theboxb itself). Thedimensionoftheirrepcorrespondingtoρ isgivenbythehook-lengthformula: (cid:14) dimρ =|ρ|! h(ρ), where h(ρ)=∏ h (i,j) (2.4) (i,j)∈ρ ρ and|ρ|isthenumberofboxesinρ. Letσ <ρ andσ (cid:28)ρ denotethataYoungdiagramσ isobtainedfromρ byremovingexactlyone boxandexactlytwoboxes,respectively. Givenσ (cid:28)ρ,letuswriteσ (cid:28) ρ orσ (cid:28) ρ ifthetwoboxes r c removedfromρ toobtainσ are, respectively, indifferentrowsordifferentcolumns. Letσ (cid:28) ρ be rc shortfor(σ (cid:28) ρ)&(σ (cid:28) ρ). Thedistancebetweentwoboxesb=(i,j)andb(cid:48)=(i(cid:48),j(cid:48))isdefinedas r c |i(cid:48)−i|+|j−j(cid:48)|. Givenσ (cid:28) ρ,letd ≥2bethedistancebetweenthetwoboxesthatweremovefrom rc ρ,σ ρ toobtainσ. Thebranchingrulestatesthattherestrictionofanirrepρ ofS toS ,wherea∈A,is A A\{a} ResSA ρ ∼=(cid:77) σ. S A\{a} σ<ρ ThemoregeneralLittlewood–Richardsonruleimpliesthattherestrictionofanirrepρ ofS toS × A {a,b} S ,wherea,b∈A,is A\{a,b} ResSA ρ ∼=(cid:77) (id×σ)⊕(cid:77) (sgn×σ(cid:48)), S{a,b}×SA\{a,b} σ(cid:28)cρ σ(cid:48)(cid:28)rρ whereid=(2)andsgn=(1,1)arethetrivialandthesignrepresentationofS ,respectively. Frobenius {a,b} reciprocitythentellsusthatthe“opposite”happenswhenweinduceanirrepofS orS ×S A\{a} {a,b} A\{a,b} toS . A Given(cid:96)∈{0,1,2,3},asetA=[N]orA=Σ,itssubsetA\{a ,...,a },andρ (cid:96)N−(cid:96),letuswrite 1 (cid:96) ρ ifwewanttostressthatwethinkofρ asanirrepofS . Weomitthesubscriptif(cid:96)=0 a1...a(cid:96) A\{a1,...,a(cid:96)} or when {a ,...,a } is clear from the context. To lighten the notations, given k∈o(N)and η (cid:96)k, let 1 (cid:96) η¯ =(N−(cid:96)−k,η) (cid:96)N−(cid:96);hereweomitthesubscriptifandonlyif(cid:96)=0. a1...a(cid:96) a1...a(cid:96) 2.5 Transporters Suppose we are given a group G, and let ξ and ξ be two isomorphic irreps of G acting on spaces 1 2 Z andZ , respectively. Uptoaglobalphase(i.e., ascalarofabsolutevalue1), thereexistsaunique 1 2 CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 6 QUANTUMADVERSARYLOWERBOUNDFORELEMENTDISTINCTNESSWITHSMALLRANGE isomorphismT fromξ toξ thatsatisfies(cid:107)T (cid:107)=1. Wecallthisisomorphismatransporterfrom 2←1 1 2 2←1 ξ toξ (or,fromZ toZ ). 1 2 1 2 Inthispaperweonlyconsiderunitaryrepresentationsandrealvectorspaces,thereforeallsingular valuesofT areequalto1and,fortheglobalphase,wehavetochooseonlybetween±1. Wealways 2←1 choosetheglobalphasessothattheyrespectinversionandcomposition,namely,sothatT T isthe 1←2 2←1 identitymatrixonZ andT T =T ,whereξ isanirrepisomorphictoξ andξ . 1 3←2 2←1 3←1 3 1 2 3 Building blocks of Γ 3.1 DecompositionofU andV intoirreps Withoutlossofgenerality,letusassumethattheadversarymatrixΓfortheELEMENT DISTINCTNESS problemsatisfythesymmetry(2.3)givenbytheautomorphismprinciple. BothU andV arerepresenta- tionsofS ×S and,duetoSchur’slemma,wewanttoseewhatirrepsofS ×S occurinbothU and [N] Σ [N] Σ V. ItisalsoconvenienttoconsiderU andV asrepresentationsofjustS orjustS . [N] Σ Claim3.1. V decomposesintoirrepsofS ×S asV ∼=(cid:76) λ×λ. [N] Σ λ(cid:96)N Proof. AsarepresentationofS andS ,respectively,V isisomorphictotheregularrepresentationof [N] Σ S andS . Foreveryy∈D andeveryπ ∈S ,thereisauniqueτ ∈S suchthaty =yτ,andπ andτ [N] Σ 0 [N] Σ π belongtoisomorphicconjugacyclasses. Thus,foreveryλ,theisotypicalsubspaceofYcorresponding to λ (i.e., the subspace corresponding to all irreps isomorphic to λ) is the same for both S and S [N] Σ [24,Section2.6]. SinceV isisomorphictotheregularrepresentation,thedimensionofthissubspaceis (dimλ)2,whichisexactlythedimensionoftheirrepλ×λ ofS ×S . [N] Σ NowletusaddressU,whichactsonthespaceXcorrespondingtothepositiveinputsx∈D . Letus 1 decomposeD asadisjointunionof(cid:0)N(cid:1)setsD , where{i,j}⊂[N]andD isthesetofallx∈D 1 2 i,j i,j 1 suchthatx =x . LetusfurtherdecomposeD asadisjointunionof(cid:0)N(cid:1)setsDs,t,where{s,t}⊂Σand i j i,j 2 i,j Ds,t isthesetofallx∈D thatdoesnotcontainsandcontainst twiceorviceversa. LetX andXs,t i,j i,j i,j i,j bethesubspacesofXthatcorrespondtothesetsD andDs,t,respectively. ThespaceXs,t isinvariant i,j i,j i,j undertheactionofthesubgroupSs,t definedas i,j Ss,t =(S ×S )×(S ×S ), i,j {i,j} [N]\{i,j} {s,t} Σ\{s,t} namely,UτXs,t =Xs,t forall(π,τ)∈Ss,t. ThereforeU restrictedtothesubspaceXs,t isarepresentation π i,j i,j i,j i,j ofSs,t,and,similarlytoClaim3.1,itdecomposesintoirrepsas i,j (cid:77) (cid:0) (cid:1) (cid:0) (cid:1) id×ν × (id⊕sgn)×ν . (3.1) ν(cid:96)N−2 To see how U decomposes into irreps of S ×S , we induce the representation (3.1) from Ss,t to [N] Σ i,j S ×S . [N] Σ TheLittlewood–RichardsonruleimpliesthatanirrepofS ×S isomorphictoλ×λ canoccurin [N] Σ U duetooneofthefollowingscenarios. CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 7 ANSISROSMANIS • Ifν (cid:28) λ andν(cid:28)(cid:54) λ (i.e.,ν isobtainedfromλ byremovingtwoboxesinthesamerow),then c r λ ×λ occurs once in the induction of (id×ν)×(id×ν). Let Xλ denote the subspace of X id,ν correspondingtothisinstanceofλ×λ. • Ifν (cid:28) λ,thenλ×λ occursonceintheinductionof(id×ν)×(id×ν)andonceintheinduction rc of(id×ν)×(sgn×ν). LetXλ andXλ denotetherespectivesubspacesofXcorresponding id,ν sgn,ν totheseinstancesofλ×λ. Note: thesubspacesXλ andXλ areindependentfromthechoiceof{i,j}⊂[N]and{s,t}⊂Σ. id,ν sgn,ν 3.2 Γasalinearcombinationoftransporters Let Ξλ and Ξλ denote the transporters from the unique instance of λ ×λ in Y to the subspaces id,ν sgn,ν Xλ and Xλ , respectively. We will specify the global phases of these transporters in Section 4.3. id,ν sgn,ν WeconsiderΞλ andΞλ asmatricesofdimensions(cid:0)N(cid:1)N!×N!andrank(dimλ)2. Schur’slemma id,ν sgn,ν 2 impliesthat,dueto(2.3),wecanexpressΓasalinearcombinationofthesetransporters. Namely, (cid:16) (cid:17) Γ= ∑ ∑ βλ Ξλ + ∑ βλ Ξλ , (3.2) id,ν id,ν sgn,ν sgn,ν λ(cid:96)N ν(cid:28)cλ ν(cid:28)rcλ wherethecoefficientsβλ andβλ arereal. id,ν sgn,ν (cid:72) (cid:72) ν (cid:72)(cid:72) (N−2) (N−3,1) (N−4,2) (N−4,1,1) λ (cid:72)(cid:72) (N) (cid:88) 0 (N−1,1) (cid:88)(cid:88) (cid:88) 1 0 (N−2,2) (cid:88) (cid:88)(cid:88) (cid:88) 2 1 0 (N−2,1,1) (cid:88)(cid:88) (cid:88) 1 0 (N−3,3) (cid:88) (cid:88)(cid:88) 2 1 (N−3,2,1) (cid:88)(cid:88) (cid:88)(cid:88) (cid:88)(cid:88) 2 1 1 (N−3,1,1,1) (cid:88)(cid:88) 1 (N−4,4) (cid:88) 2 (N−4,3,1) (cid:88)(cid:88) (cid:88) 2 2 (N−4,2,2) (cid:88) 2 (N−4,2,1,1) (cid:88)(cid:88) 2 Table1: AvailableoperatorsfortheconstructionofΓ. Wedistinguishthreecases: bothλ andν arethe samebelowthefirstrow(label“(cid:88) ”),λ hasoneboxmorebelowthefirstrowthanν (label“(cid:88)(cid:88) ”),λ has 0 1 twoboxesmorebelowthefirstrowthanν (labels“(cid:88) ”and“(cid:88)(cid:88) ”). 2 2 Thus we have reduced the construction of the adversary matrix Γ to choosing the coefficients β of the transporters in (3.2). To illustrate what are the available transporters, let us consider the last four(N−2)-boxYoungdiagramsν ofthelexicographicalorder—(N−2),(N−3,1),(N−4,2),and (N−4,1,1)—andallλ thatareobtainedfromtheseν byaddingtwoboxesindifferentcolumns. Table CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 8 QUANTUMADVERSARYLOWERBOUNDFORELEMENTDISTINCTNESSWITHSMALLRANGE 1 shows pairs of λ and ν for which we have both Ξλ and Ξλ available for the construction of Γ id,ν sgn,ν (doublecheckmark“(cid:88)(cid:88)”)orjustΞλ available(singlecheckmark“(cid:88)”). id,ν Duetothesymmetry,(cid:107)∆ ◦Γ(cid:107)isthesameforalli∈[N],so,fromnowon,letusonlyconsider∆ ◦Γ. i 1 Wewanttochoosethecoefficientsβ sothat(cid:107)Γ(cid:107)∈Ω(N2/3)and(cid:107)∆ ◦Γ(cid:107)∈O(1). Theautomorphism 1 principlealsoimplies(see[16])thatwecanassumethattheprincipalleftandrightsingularvectorsofΓ aretheall-onesvectors,whichcorrespondtoΞ(N) . Wethuschooseβ(N) ∈Θ(N2/3). id,(N−2) id,(N−2) Inordertounderstandhowtochoosethecoefficientsβ,inAppendixAweprovethefollowingclaim, whichrelatesallthecoefficientsoftransportersofTable1andmore. Claim 3.2. Suppose Γ is given as in (3.2) and β(N) =N2/3. Consider λ (cid:96)N that has O(1) boxes id,(N−2) belowthefirstrowandν (cid:28) λ. Inorderfor(cid:107)∆ ◦Γ(cid:107)∈O(1)tohold,weneedtohave c 1 1. βλ =N2/3+O(1)ifλ andν arethesamebelowthefirstrow, id,ν 2. βλ ,βλ =cλN1/6+O(1) if λ has one box more below the first row than ν, where cλ is a id,ν sgn,ν ν ν constantdependingonlyonthepartofλ andν belowthefirstrow,2 3. βλ ,βλ =O(1)ifλ hastwoboxesmorebelowthefirstrowthanν. id,ν sgn,ν Notethatwealwayshavethefreedomofchanging(aconstantnumberof)coefficientsβ uptoan additivetermofO(1)becauseofthefactthat (cid:8) (cid:9) γ (∆ )=max (cid:107)∆ ◦B(cid:107) : (cid:107)B(cid:107)≤1 ≤2 (3.3) 2 1 1 B (see[16]forthisandotherfactsabouttheγ norm). WewillusethisfactagaininSection6. 2 4 Specification of Γ via Γ 1,2 Duetothesymmetry(2.2),itsufficestospecifyasinglerowoftheadversarymatrixΓinordertospecify thewholematrix. Fortheconvenience,letusinsteadspecifyΓviaspecifyingits(N!×N!)-dimensional submatrix Γ —for {i,j}⊂[N], we define Γ to be the submatrix of Γ that corresponds to the rows 1,2 i,j labeled by x∈D , that is, positive inputs x with x =x . We think of Γ both as an N!×N! square i,j i j i,j matrix and as a matrix of the same dimensions as Γ that is obtained from Γ by setting to zero all the (cid:0)(cid:0)N(cid:1)−1(cid:1)N!rowsthatcorrespondtox∈/ D . 2 i,j 4.1 NecessaryandsufficientsymmetriesofΓ 1,2 Forall(π,τ)∈(S ×S )×S , wehaveUτX =X and, therefore,UτΓ =Γ Vτ. Thisis {1,2} [3,N] Σ π 1,2 1,2 π 1,2 1,2 π thenecessaryandsufficientsymmetrythatΓ mustsatisfyinorderforΓtobefixedunderallindexand 1,2 alphabetpermutations. SinceU Γ =Γ ,wealsohaveΓ V =Γ . Wehave (12) 1,2 1,2 1,2 (12) 1,2 (cid:18) (cid:19) N 1 Γ= ∑ Γ = ∑U Γ V = ∑ U Γ V , (4.1) i,j π 1,2 π−1 2 N! π 1,2 π−1 {i,j}⊂[N] π∈R π∈S[N] (cid:113) 2Letλˆ andνˆ bethepartofλandνbelowthefirstrow,respectively.Thencλ= h(λˆ)/h(νˆ)=(cid:112)Ndimν/dimλ+O(1/N). ν CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 9 ANSISROSMANIS whereR=Rep(S /(S ×S ))isatransversaloftheleftcosetsofS ×S inS . [N] {1,2} [3,N] {1,2} [3,N] [N] Let f beabijectionbetweenD andD definedas 0 1,2 f: D →D : (y ,y ,y ,...,y )(cid:55)→(y ,y ,y ,...,y ), 0 1,2 1 2 3 N 1 1 3 N andletF bethecorrespondingpermutationmatrixmappingYtoX . Letusorderrowsandcolumnsof 1,2 Γ sothattheycorrespondto f(y)andy,respectively,wherewetakey∈D inthesameorderforboth 1,2 0 (seeFigure1). Hence,F becomestheidentitymatrixonY(fromthispointonward,weessentiallythink ofX andYasthesamespace). LetusdenotethisidentitymatrixbyI. 1,2 (12) π τ a a b c c d e b b c b b a d c c ... e a e b ... c d e a d a e b e d d e d c a aacde aaced . . . bbead ccade π Γ1,2 (12) ccead τ ddbec . . . eecba Figure1: SymmetriesofΓ forN =5andΣ={a,b,c,d,e}. Withrespecttothebijection f,theorder 1,2 ofrowsandcolumnsmatches. ThesolidarrowsshowthatUτ andVτ actsymmetricallyonΓ (herewe 1,2 useτ =(aeb)(cd)∈S ),andsodoU andV forπ ∈S (hereweuseπ =(354)). However,asshown Σ π π [3,N] bythedash-dottedarrows,U actsastheidentityontherows,whileV transposesthecolumns. (12) (12) Forall(π,τ)∈S ×S wehave f(yτ)=(f(y))τ and,thus,Vτ =FVτ =UτF =Uτ,wherewe [3,N] Σ π π π π π π considertherestrictionofUτ toX . NotethatU =IonX ,whileV (cid:54)=I. Hencenowthetwo π 1,2 (12) 1,2 (12) necessaryandsufficientsymmetriesthatΓ mustsatisfyare 1,2 VτΓ =Γ Vτ forall (π,τ)∈S ×S and Γ V =Γ . (4.2) π 1,2 1,2 π [3,N] Σ 1,2 (12) 1,2 Figure1illustratesthesesymmetries. CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 10

Description:
ANSIS ROSMANIS. Currently, two main techniques for proving lower bounds on quantum query complexity are the polynomial method developed by
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.