CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2014,Article04,pages1–27 http://cjtcs.cs.uchicago.edu/ Quantum Adversary Lower Bound for Element Distinctness with Small Range Ansis Rosmanis∗ Received March5,2014;Revised May12,2014;Published July9,2014 Abstract: The ELEMENT DISTINCTNESS problem is to decide whether each character ofaninputstringisunique. Thequantumquerycomplexityof ELEMENT DISTINCTNESS is known to be Θ(N2/3); the polynomial method gives a tight lower bound for any input alphabet,whileatightadversaryconstructionwasonlyknownforalphabetsofsizeΩ(N2). WeconstructatightΩ(N2/3)adversarylowerboundforELEMENT DISTINCTNESSwith minimalnon-trivialalphabetsize,whichequalsthelengthoftheinput. Thisresultmayhelp toimprovelowerboundsforotherrelatedqueryproblems. 1 Introduction and motivation Background. Inquantumcomputation,oneofthemainquestionsthatweareinterestedinis: What isthequantumcircuitcomplexityofagivencomputationalproblem? Thisquestionishardtoanswer, andsoweconsideranalternativequestion: Whatisthequantumquerycomplexityoftheproblem? For many problems, it is seemingly easier to (upper and lower) bound the number of times an algorithm requirestoaccesstheinputratherthantoboundthenumberofelementaryquantumoperationsrequired by the algorithm. Nonetheless, the study of the quantum query complexity can give us great insights forthequantumcircuitcomplexity. Forexample,aquery-efficientalgorithmfor SIMON’S PROBLEM [26]helpedShortodevelopatime-efficientalgorithmforfactoring[25]. Ontheotherhand, Ω˜(N1/5) and Ω(N1/2) lower bounds on the (bounded error) quantum query complexity of the SET EQUALITY [21]andtheINDEX ERASURE[6]problems,respectively,ruledoutcertainapproachesforconstructing time-efficientquantumalgorithmsforthe GRAPH ISOMORPHISMproblem. ∗SupportedbyMikeandOpheliaLazaridisFellowship,DavidR.CheritonGraduateScholarship,andtheUSARO. Keywordsandphrases: quantumquerycomplexity,adversarybound,elementdistinctness ©2014AnsisRosmanis cbLicensedunderaCreativeCommonsAttributionLicense(CC-BY) DOI:10.4086/cjtcs.2014.004 ANSISROSMANIS Currently, two main techniques for proving lower bounds on quantum query complexity are the polynomialmethoddevelopedbyBeals,Buhrman,Cleve,Mosca,anddeWolf[7],andtheadversary method originally developed by Ambainis [2] in what later became known as the positive adversary method. The adversary method was later strengthened by Høyer, Lee, and Špalek [16] by allowing negativeweightsintheadversarymatrix. Inrecentresults[22,20],Lee,Mittal,Reichardt,Špalek,and Szegedyshowedthat,unlikethepolynomialmethod[3],thegeneral(i.e.,strengthened)adversarymethod cangivetightlowerboundsforallproblems. Thisisastrongincentiveforthestudyoftheadversary method. ElementDistinctnessandCollision. Eventhoughweknowthattightadversary(lower)boundsexist for all query problems, for multiple problems we still do not know how to even construct adversary bounds that would match lower bounds obtained by other methods. For about a decade, ELEMENT DISTINCTNESS and COLLISION wereprimeexamplesofsuchproblems. Givenaninputstringz∈ΣN, the ELEMENT DISTINCTNESS problem is to decide whether each character of z is unique, and the COLLISIONproblemisitsspecialcasegivenapromisethateachcharacterofziseitheruniqueorappears inzexactlytwice. Asonecanthinkofzasafunctionthatmaps{1,2,...,N}toΣ,thealphabetΣisoften alsocalledtherange. The quantum query complexity of these two problems is known. Brassard, Høyer, and Tapp first gaveanO(N1/3)quantumqueryalgorithmforCOLLISION[13]. AaronsonandShithengaveamatching Ω(N1/3)lowerboundforCOLLISIONviathepolynomialmethod,requiringthat|Σ|≥3N/2[1]. Dueto aparticularreductionfromCOLLISIONtoELEMENT DISTINCTNESS,theirlowerboundalsoimpliedan Ω(N2/3)lowerboundforELEMENT DISTINCTNESS,requiringthat|Σ|∈Ω(N2). Subsequently,Kutin (for COLLISION) and Ambainis (for both) removed these requirements on the alphabet size [19, 4]. Finally,AmbainisgaveanO(N2/3)quantumqueryalgorithmforELEMENT DISTINCTNESSbasedona quantumwalk[5],thusimprovingthebestpreviouslyknownO(N3/4)upperbound[14]. Hence,theproofoftheΩ(N2/3)lowerboundforELEMENT DISTINCTNESSwithminimalnon-trivial alphabet size N (and, thus, any alphabet size) consists of three steps: an Ω(N1/3) lower bound for COLLISION,areductionfromanΩ(N1/3)lowerboundforCOLLISIONtoanΩ(N2/3)lowerboundfor ELEMENT DISTINCTNESS withthealphabetsizeΩ(N2),andareductionofthealphabetsize. Inthis paperweprovethesameresultdirectlybyprovidinganΩ(N2/3)generaladversaryboundfor ELEMENT DISTINCTNESSwiththealphabetsizeN. Theproblemsof SET EQUALITY,k-DISTINCTNESS,andk-SUM arecloselyrelatedto COLLISION andELEMENT DISTINCTNESS. SET EQUALITYisaspecialcaseofCOLLISIONgivenanextrapromise that each character of the first half (and, thus, the second half) of the input string is unique. Given a constantk,thek-DISTINCTNESSproblemistodecidewhethertheinputstringcontainssomecharacterat leastk times. Fork-SUM, weassumethatΣisanadditivegroupandtheproblemistodecideifthere existknumbersamongN thatsumuptoaprescribednumber. Recentadversarybounds. Duetothecertificatecomplexitybarrier[30,28],thepositiveweightadver- sarymethodfailstogiveabetterlowerboundforELEMENTDISTINCTNESSthanΩ(N1/2). Andsimilarly, due to the property testing barrier [16], it fails to give a better lower bound for COLLISION than the trivialΩ(1). Recently,BelovsgaveanΩ(N2/3)generaladversaryboundforELEMENT DISTINCTNESS CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 2 QUANTUMADVERSARYLOWERBOUNDFORELEMENTDISTINCTNESSWITHSMALLRANGE withalargeΩ(N2)alphabetsize[8]. Inaseriesofworksthatfollowed,tightgeneraladversarybounds weregivenforthek-SUM[12], CERTIFICATE-SUM[10],andCOLLISIONand SET EQUALITYproblems [11], all of them requiring that the alphabet size is large. Ω(Nk/(k+1)) and Ω(N1/3) lower bounds for k-SUM and SET EQUALITY, respectively, were improvements over the best previously known lower bounds. (TheΩ(N1/3)lowerboundfor SET EQUALITYwasalsoindependentlyprovenbyZhandry[29]; heusedacompletelydifferentmethod,whichdidnotrequireanyassumptionsonthealphabetsize.) The adversary lower bound for a problem is given via the adversary matrix (Section 2.2). The constructionoftheadversarymatrixinalltheserecent(general)adversaryboundsmentionedhasone ideaincommon: theadversarymatrixisextractedfromalargermatrixthathasbeenconstructedusing, essentially,theHammingassociationscheme[15]. Thefactthatweinitiallyembedtheadversarymatrix inthislargermatrixisthereasonbehindtherequirementofthelargealphabetsize. Moreprecisely,dueto thebirthdayparadox,theseadversaryboundsrequirethealphabetΣtobelargeenoughsothatarandomly chosenstringinΣN withconstantprobabilityisanegativeinputoftheproblem. Also, for these problems, all the negative inputs are essentially equally hard. However, for k- DISTINCTNESS,forexample,thehardestnegativeinputsseemtobetheonesinwhicheachcharacter appears k−1 times, and a randomly chosen negative input for k-DISTINCTNESS is such only with a minusculeprobability. ThismightbeareasonwhyanΩ(N2/3)adversaryboundfork-DISTINCTNESS [27] based on the idea of the embedding does not narrow the gap to the best known upper bound, O(N1−2k−2/(2k−1))[9]. (TheΩ(N2/3)lowerboundwasalreadyknownpreviouslyviathereductionfrom ELEMENT DISTINCTNESSattributedtoAaronsonin[5].) Motivation for our work. In this paper we construct an explicit adversary matrix for ELEMENT DISTINCTNESSwiththealphabetsize|Σ|=N (and,thus,anyalphabetsize)yieldingthetightΩ(N2/3) lowerbound. Wealsoprovidecertain“tight”conditionsthateveryoptimaladversarymatrixforELEMENT DISTINCTNESS mustsatisfy,1 thereforesuggestingthateveryoptimaladversarymatrixfor ELEMENT DISTINCTNESSmighthavetobe,insomesense,closetotheadversarymatrixthatwehaveconstructed. The tight Ω(Nk/(k+1)) adversary bound for k-SUM by Belovs and Špalek [12] is an extension of Belovs’Ω(N2/3)adversaryboundfor ELEMENT DISTINCTNESS [8],anditrequires|Σ|∈Ω(Nk). We constructtheadversarymatrixforELEMENT DISTINCTNESSdirectly,withouttheembedding,therefore wedonotrequirethecondition|Σ|∈Ω(N2)asinBelovs’adversarybound. Wehopethatthismighthelp toreducetherequiredalphabetsizeintheΩ(Nk/(k+1))lowerboundfork-SUM. Aswementionedbefore,anadversarymatrixfork-DISTINCTNESSbasedontheideaoftheembed- dingmightnotbeabletogivetightlowerbounds. Ontheotherhand,inourconstructionweonlyassume thattheadversarymatrixisinvariantunderallindexandallalphabetpermutations,andthatissomething we can always do without loss of generality due to the automorphism principle [16]—for ELEMENT DISTINCTNESS,k-DISTINCTNESS,andmanyotherproblems. Hence,duetotheoptimalityofthegeneral adversarymethod,weknowthatonecanconstructatightadversaryboundfork-DISTINCTNESS that satisfiesthesesymmetries,andwehopethatourconstructionforELEMENT DISTINCTNESSmightgive insightsinhowtodothat. 1Assuming,withoutlossofgenerality,thattheadversarymatrixhasthesymmetrygivenbytheautomorphismprinciple. CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 3 ANSISROSMANIS Structureofthepaper. Thispaperisstructuredasfollows. InSection2wepresentthepreliminariesof ourwork,includingtheadversarymethod,theautomorphismprinciple,andthebasicsoftherepresentation theoryofthesymmetricgroup. InSection3weshowthattheadversarymatrixΓcanbeexpressedas alinearcombinationofspecificmatrices. InthissectionwealsopresentClaim3.2,whichstateswhat conditions every optimal adversary matrix for ELEMENT DISTINCTNESS must satisfy; we prove this claimintheappendix. InSection4weshowhowtospecifytheadversarymatrixΓviaitsubmatrixΓ , 1,2 whichwillmaketheanalysisoftheadversarymatrixsimpler. InSection5wepresenttoolsforestimating the spectral norm of the matrix entrywise product of Γ and the difference matrix ∆, a quantity that is i essentialtotheadversarymethod. InSection6weusetheconditionsgivenbyClaim3.2toconstructan adversarymatrixforELEMENT DISTINCTNESSwiththealphabetsizeN,andweshowthatthismatrix indeedyieldsthedesiredΩ(N2/3)lowerbound. WeconcludeinSection7withopenproblems. 2 Preliminaries 2.1 Elementdistinctnessproblem Let N be the length of the input and let Σ be the input alphabet. Let [i,N] = {i,i+1,...,N} and [N]=[1,N]forshort. Givenaninputstringz∈ΣN,theELEMENT DISTINCTNESSproblemistodecide whetherzcontainsacollisionornot,namely,weatherthereexisti,j∈[N]suchthati(cid:54)= jandz =z . We i j onlyconsideraspecialcaseoftheproblemwherewearegivenapromisethattheinputcontainsatmost onecollision. Thispromisedoesnotchangethecomplexityoftheproblem[5]. LetD andD bethesetsofpositiveandnegativeinputs,respectively,thatis,inputswithaunique 1 0 collision and inputs without a collision. If |Σ|<N, then D =0/, and the problem becomes trivial, 0 thereforeweconsiderthecasewhen|Σ|=N. Wehave (cid:18) (cid:19) (cid:18) (cid:19) N |Σ|! N |Σ|! |D |= = N! and |D |= =N!. 1 0 2 (|Σ|−N+1)! 2 (|Σ|−N)! 2.2 Adversarymethod The general adversary method gives optimal bounds for any quantum query problem. Here we only considertheELEMENTDISTINCTNESSproblem,soitsufficestodefinetheadversarymethodfordecision problems. Letusthinkofadecisionproblem pasaBoolean-valuedfunction p:D→{0,1}withdomain D⊆ΣN,andletD = p−1(1)andD = p−1(0). 1 0 Anadversarymatrixforadecisionproblem pisareal|D |×|D |matrixΓwhoserowsarelabeled 1 0 by the positive inputs D and columns by the negative inputs D . Let Γ[[x,y]] denote the entry of Γ 1 0 correspondingtothepairofinputs(x,y)∈D ×D . Fori∈[N],thedifferencematrices∆ and∆ arethe 1 0 i i matricesofthesamedimensionsandthesamerowandcolumnlabelingasΓthataredefinedby (cid:40) (cid:40) 0, ifx =y, 1, ifx =y, i i i i ∆[[x,y]]= and ∆[[x,y]]= i i 1, ifx (cid:54)=y, 0, ifx (cid:54)=y. i i i i CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 4 QUANTUMADVERSARYLOWERBOUNDFORELEMENTDISTINCTNESSWITHSMALLRANGE Theorem2.1(Adversarybound[16,20]). Thequantumquerycomplexityofthedecisionproblem pis Θ(Adv(p)),whereAdv(p)istheoptimalvalueofthesemi-definiteprogram maximize (cid:107)Γ(cid:107) (2.1) subjectto (cid:107)∆ ◦Γ(cid:107)≤1foralli∈[N], i wherethemaximizationisoveralladversarymatricesΓfor p,(cid:107)·(cid:107)isthespectralnorm(i.e.,thelargest singularvalue),and◦istheentrywisematrixproduct. Everyfeasiblesolutiontothesemi-definiteprogram(2.1)yieldsalowerboundonthequantumquery complexity of p. Note that we can choose any adversary matrix Γ and scale it so that the condition (cid:107)∆ ◦Γ(cid:107)≤1holds. Inpractice,weusethecondition(cid:107)∆ ◦Γ(cid:107)∈O(1)insteadof(cid:107)∆ ◦Γ(cid:107)≤1. Alsonote i i i that∆ ◦Γ=Γ−∆ ◦Γ. i i 2.3 Symmetriesoftheadversarymatrix It is known that we can restrict the maximization in Theorem 2.1 to adversary matrices Γ satisfying certainsymmetries. LetS bethesymmetricgroupofafinitesetA,thatis,thegroupwhoseelementsare A allthepermutationsofelementsofAandwhosegroupoperationisthecompositionofpermutations. The automorphismprinciple[16]impliesthat,withoutlossofgenerality,wecanassumethatΓfor ELEMENT DISTINCTNESS is fixed under all index and all alphabet permutations. Namely, index permutations π ∈S andalphabetpermutationsτ ∈S actoninputstringsz∈ΣN inthenaturalway: [N] Σ π ∈S : z=(z ,...,z ) (cid:55)→ z =(cid:0)z ,...,z (cid:1), [N] 1 N π π−1(1) π−1(N) τ ∈S : z=(z ,...,z ) (cid:55)→ zτ =(cid:0)τ(z ),...,τ(z )(cid:1). Σ 1 N 1 N The actions of π and τ commute: we have (z )τ = (zτ) , which we denote by zτ for short. The π π π automorphismprincipleimpliesthatwecanassume Γ[[x,y]]=Γ[[xτ,yτ]] (2.2) π π forallx∈D ,y∈D ,π ∈S ,andτ ∈S . 1 0 [N] Σ Let X∼=R|D1| and Y∼=R|D0| be the vector spaces corresponding to the positive and the negative inputs, respectively. (We can view Γ as a linear operator that maps Y to X.) Let Uτ and Vτ be the π π permutationmatricesthatrespectivelyactonthespacesXandYandthatmapeveryx∈D toxτ and 1 π everyy∈D toyτ. Then(2.2)isequivalentto 0 π UτΓ=ΓVτ (2.3) π π forallπ ∈S ,andτ ∈S . BothU andV arerepresentationsofS ×S . [N] Σ [N] Σ 2.4 Representationtheoryofthesymmetricgroup Letuspresentthebasicsoftherepresentationtheoryofthesymmetricgroup. (Foradetailedstudyofthe representationtheoryofthesymmetricgroup,referto[17,23];forthefundamentalsoftherepresentation theoryoffinitegroups,referto[24].) CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 5 ANSISROSMANIS Uptoisomorphism,thereisone-to-onecorrespondencebetweentheirreps(i.e.,irreduciblerepresen- tations)ofS and|A|-boxYoungdiagrams,andweoftenusethesetwotermsinterchangeably. Weuseζ, A η,andθ todenoteYoungdiagramshavingo(N)boxes,λ,µ,andν todenoteYoungdiagramshavingN, N−1,andN−2boxes,respectively,andρ andσ forgeneralstatementsandotherpurposes. Let ρ (cid:96) M denote that ρ is an M-box Young diagram. For a Young diagram ρ, let ρ(i) and ρ(cid:62)(j) denote the number of boxes in the i-th row and j-th column of ρ, respectively. We write ρ = (ρ(1),ρ(2),...,ρ(r)), where r = ρ(cid:62)(1) is the number of rows in ρ, and, given M ≥ ρ(1), let (M,ρ)beshortfor(M,ρ(1),ρ(2),...,ρ(r)). Wesaythatabox(i,j)ispresentinρ andwrite(i,j)∈ρ ifρ(i)≥ j(equivalently,ρ(cid:62)(j)≥i). The hook-lengthh (b)ofaboxbisthesumofthenumberofboxesontherightfrombinthesamerow(i.e., ρ ρ(i)− j)andthenumberofboxesbelowbinthesamecolumn(i.e.,ρ(cid:62)(j)−i)plusone(i.e.,theboxb itself). Thedimensionoftheirrepcorrespondingtoρ isgivenbythehook-lengthformula: (cid:14) dimρ =|ρ|! h(ρ), where h(ρ)=∏ h (i,j) (2.4) (i,j)∈ρ ρ and|ρ|isthenumberofboxesinρ. Letσ <ρ andσ (cid:28)ρ denotethataYoungdiagramσ isobtainedfromρ byremovingexactlyone boxandexactlytwoboxes,respectively. Givenσ (cid:28)ρ,letuswriteσ (cid:28) ρ orσ (cid:28) ρ ifthetwoboxes r c removedfromρ toobtainσ are, respectively, indifferentrowsordifferentcolumns. Letσ (cid:28) ρ be rc shortfor(σ (cid:28) ρ)&(σ (cid:28) ρ). Thedistancebetweentwoboxesb=(i,j)andb(cid:48)=(i(cid:48),j(cid:48))isdefinedas r c |i(cid:48)−i|+|j−j(cid:48)|. Givenσ (cid:28) ρ,letd ≥2bethedistancebetweenthetwoboxesthatweremovefrom rc ρ,σ ρ toobtainσ. Thebranchingrulestatesthattherestrictionofanirrepρ ofS toS ,wherea∈A,is A A\{a} ResSA ρ ∼=(cid:77) σ. S A\{a} σ<ρ ThemoregeneralLittlewood–Richardsonruleimpliesthattherestrictionofanirrepρ ofS toS × A {a,b} S ,wherea,b∈A,is A\{a,b} ResSA ρ ∼=(cid:77) (id×σ)⊕(cid:77) (sgn×σ(cid:48)), S{a,b}×SA\{a,b} σ(cid:28)cρ σ(cid:48)(cid:28)rρ whereid=(2)andsgn=(1,1)arethetrivialandthesignrepresentationofS ,respectively. Frobenius {a,b} reciprocitythentellsusthatthe“opposite”happenswhenweinduceanirrepofS orS ×S A\{a} {a,b} A\{a,b} toS . A Given(cid:96)∈{0,1,2,3},asetA=[N]orA=Σ,itssubsetA\{a ,...,a },andρ (cid:96)N−(cid:96),letuswrite 1 (cid:96) ρ ifwewanttostressthatwethinkofρ asanirrepofS . Weomitthesubscriptif(cid:96)=0 a1...a(cid:96) A\{a1,...,a(cid:96)} or when {a ,...,a } is clear from the context. To lighten the notations, given k∈o(N)and η (cid:96)k, let 1 (cid:96) η¯ =(N−(cid:96)−k,η) (cid:96)N−(cid:96);hereweomitthesubscriptifandonlyif(cid:96)=0. a1...a(cid:96) a1...a(cid:96) 2.5 Transporters Suppose we are given a group G, and let ξ and ξ be two isomorphic irreps of G acting on spaces 1 2 Z andZ , respectively. Uptoaglobalphase(i.e., ascalarofabsolutevalue1), thereexistsaunique 1 2 CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 6 QUANTUMADVERSARYLOWERBOUNDFORELEMENTDISTINCTNESSWITHSMALLRANGE isomorphismT fromξ toξ thatsatisfies(cid:107)T (cid:107)=1. Wecallthisisomorphismatransporterfrom 2←1 1 2 2←1 ξ toξ (or,fromZ toZ ). 1 2 1 2 Inthispaperweonlyconsiderunitaryrepresentationsandrealvectorspaces,thereforeallsingular valuesofT areequalto1and,fortheglobalphase,wehavetochooseonlybetween±1. Wealways 2←1 choosetheglobalphasessothattheyrespectinversionandcomposition,namely,sothatT T isthe 1←2 2←1 identitymatrixonZ andT T =T ,whereξ isanirrepisomorphictoξ andξ . 1 3←2 2←1 3←1 3 1 2 3 Building blocks of Γ 3.1 DecompositionofU andV intoirreps Withoutlossofgenerality,letusassumethattheadversarymatrixΓfortheELEMENT DISTINCTNESS problemsatisfythesymmetry(2.3)givenbytheautomorphismprinciple. BothU andV arerepresenta- tionsofS ×S and,duetoSchur’slemma,wewanttoseewhatirrepsofS ×S occurinbothU and [N] Σ [N] Σ V. ItisalsoconvenienttoconsiderU andV asrepresentationsofjustS orjustS . [N] Σ Claim3.1. V decomposesintoirrepsofS ×S asV ∼=(cid:76) λ×λ. [N] Σ λ(cid:96)N Proof. AsarepresentationofS andS ,respectively,V isisomorphictotheregularrepresentationof [N] Σ S andS . Foreveryy∈D andeveryπ ∈S ,thereisauniqueτ ∈S suchthaty =yτ,andπ andτ [N] Σ 0 [N] Σ π belongtoisomorphicconjugacyclasses. Thus,foreveryλ,theisotypicalsubspaceofYcorresponding to λ (i.e., the subspace corresponding to all irreps isomorphic to λ) is the same for both S and S [N] Σ [24,Section2.6]. SinceV isisomorphictotheregularrepresentation,thedimensionofthissubspaceis (dimλ)2,whichisexactlythedimensionoftheirrepλ×λ ofS ×S . [N] Σ NowletusaddressU,whichactsonthespaceXcorrespondingtothepositiveinputsx∈D . Letus 1 decomposeD asadisjointunionof(cid:0)N(cid:1)setsD , where{i,j}⊂[N]andD isthesetofallx∈D 1 2 i,j i,j 1 suchthatx =x . LetusfurtherdecomposeD asadisjointunionof(cid:0)N(cid:1)setsDs,t,where{s,t}⊂Σand i j i,j 2 i,j Ds,t isthesetofallx∈D thatdoesnotcontainsandcontainst twiceorviceversa. LetX andXs,t i,j i,j i,j i,j bethesubspacesofXthatcorrespondtothesetsD andDs,t,respectively. ThespaceXs,t isinvariant i,j i,j i,j undertheactionofthesubgroupSs,t definedas i,j Ss,t =(S ×S )×(S ×S ), i,j {i,j} [N]\{i,j} {s,t} Σ\{s,t} namely,UτXs,t =Xs,t forall(π,τ)∈Ss,t. ThereforeU restrictedtothesubspaceXs,t isarepresentation π i,j i,j i,j i,j ofSs,t,and,similarlytoClaim3.1,itdecomposesintoirrepsas i,j (cid:77) (cid:0) (cid:1) (cid:0) (cid:1) id×ν × (id⊕sgn)×ν . (3.1) ν(cid:96)N−2 To see how U decomposes into irreps of S ×S , we induce the representation (3.1) from Ss,t to [N] Σ i,j S ×S . [N] Σ TheLittlewood–RichardsonruleimpliesthatanirrepofS ×S isomorphictoλ×λ canoccurin [N] Σ U duetooneofthefollowingscenarios. CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 7 ANSISROSMANIS • Ifν (cid:28) λ andν(cid:28)(cid:54) λ (i.e.,ν isobtainedfromλ byremovingtwoboxesinthesamerow),then c r λ ×λ occurs once in the induction of (id×ν)×(id×ν). Let Xλ denote the subspace of X id,ν correspondingtothisinstanceofλ×λ. • Ifν (cid:28) λ,thenλ×λ occursonceintheinductionof(id×ν)×(id×ν)andonceintheinduction rc of(id×ν)×(sgn×ν). LetXλ andXλ denotetherespectivesubspacesofXcorresponding id,ν sgn,ν totheseinstancesofλ×λ. Note: thesubspacesXλ andXλ areindependentfromthechoiceof{i,j}⊂[N]and{s,t}⊂Σ. id,ν sgn,ν 3.2 Γasalinearcombinationoftransporters Let Ξλ and Ξλ denote the transporters from the unique instance of λ ×λ in Y to the subspaces id,ν sgn,ν Xλ and Xλ , respectively. We will specify the global phases of these transporters in Section 4.3. id,ν sgn,ν WeconsiderΞλ andΞλ asmatricesofdimensions(cid:0)N(cid:1)N!×N!andrank(dimλ)2. Schur’slemma id,ν sgn,ν 2 impliesthat,dueto(2.3),wecanexpressΓasalinearcombinationofthesetransporters. Namely, (cid:16) (cid:17) Γ= ∑ ∑ βλ Ξλ + ∑ βλ Ξλ , (3.2) id,ν id,ν sgn,ν sgn,ν λ(cid:96)N ν(cid:28)cλ ν(cid:28)rcλ wherethecoefficientsβλ andβλ arereal. id,ν sgn,ν (cid:72) (cid:72) ν (cid:72)(cid:72) (N−2) (N−3,1) (N−4,2) (N−4,1,1) λ (cid:72)(cid:72) (N) (cid:88) 0 (N−1,1) (cid:88)(cid:88) (cid:88) 1 0 (N−2,2) (cid:88) (cid:88)(cid:88) (cid:88) 2 1 0 (N−2,1,1) (cid:88)(cid:88) (cid:88) 1 0 (N−3,3) (cid:88) (cid:88)(cid:88) 2 1 (N−3,2,1) (cid:88)(cid:88) (cid:88)(cid:88) (cid:88)(cid:88) 2 1 1 (N−3,1,1,1) (cid:88)(cid:88) 1 (N−4,4) (cid:88) 2 (N−4,3,1) (cid:88)(cid:88) (cid:88) 2 2 (N−4,2,2) (cid:88) 2 (N−4,2,1,1) (cid:88)(cid:88) 2 Table1: AvailableoperatorsfortheconstructionofΓ. Wedistinguishthreecases: bothλ andν arethe samebelowthefirstrow(label“(cid:88) ”),λ hasoneboxmorebelowthefirstrowthanν (label“(cid:88)(cid:88) ”),λ has 0 1 twoboxesmorebelowthefirstrowthanν (labels“(cid:88) ”and“(cid:88)(cid:88) ”). 2 2 Thus we have reduced the construction of the adversary matrix Γ to choosing the coefficients β of the transporters in (3.2). To illustrate what are the available transporters, let us consider the last four(N−2)-boxYoungdiagramsν ofthelexicographicalorder—(N−2),(N−3,1),(N−4,2),and (N−4,1,1)—andallλ thatareobtainedfromtheseν byaddingtwoboxesindifferentcolumns. Table CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 8 QUANTUMADVERSARYLOWERBOUNDFORELEMENTDISTINCTNESSWITHSMALLRANGE 1 shows pairs of λ and ν for which we have both Ξλ and Ξλ available for the construction of Γ id,ν sgn,ν (doublecheckmark“(cid:88)(cid:88)”)orjustΞλ available(singlecheckmark“(cid:88)”). id,ν Duetothesymmetry,(cid:107)∆ ◦Γ(cid:107)isthesameforalli∈[N],so,fromnowon,letusonlyconsider∆ ◦Γ. i 1 Wewanttochoosethecoefficientsβ sothat(cid:107)Γ(cid:107)∈Ω(N2/3)and(cid:107)∆ ◦Γ(cid:107)∈O(1). Theautomorphism 1 principlealsoimplies(see[16])thatwecanassumethattheprincipalleftandrightsingularvectorsofΓ aretheall-onesvectors,whichcorrespondtoΞ(N) . Wethuschooseβ(N) ∈Θ(N2/3). id,(N−2) id,(N−2) Inordertounderstandhowtochoosethecoefficientsβ,inAppendixAweprovethefollowingclaim, whichrelatesallthecoefficientsoftransportersofTable1andmore. Claim 3.2. Suppose Γ is given as in (3.2) and β(N) =N2/3. Consider λ (cid:96)N that has O(1) boxes id,(N−2) belowthefirstrowandν (cid:28) λ. Inorderfor(cid:107)∆ ◦Γ(cid:107)∈O(1)tohold,weneedtohave c 1 1. βλ =N2/3+O(1)ifλ andν arethesamebelowthefirstrow, id,ν 2. βλ ,βλ =cλN1/6+O(1) if λ has one box more below the first row than ν, where cλ is a id,ν sgn,ν ν ν constantdependingonlyonthepartofλ andν belowthefirstrow,2 3. βλ ,βλ =O(1)ifλ hastwoboxesmorebelowthefirstrowthanν. id,ν sgn,ν Notethatwealwayshavethefreedomofchanging(aconstantnumberof)coefficientsβ uptoan additivetermofO(1)becauseofthefactthat (cid:8) (cid:9) γ (∆ )=max (cid:107)∆ ◦B(cid:107) : (cid:107)B(cid:107)≤1 ≤2 (3.3) 2 1 1 B (see[16]forthisandotherfactsabouttheγ norm). WewillusethisfactagaininSection6. 2 4 Specification of Γ via Γ 1,2 Duetothesymmetry(2.2),itsufficestospecifyasinglerowoftheadversarymatrixΓinordertospecify thewholematrix. Fortheconvenience,letusinsteadspecifyΓviaspecifyingits(N!×N!)-dimensional submatrix Γ —for {i,j}⊂[N], we define Γ to be the submatrix of Γ that corresponds to the rows 1,2 i,j labeled by x∈D , that is, positive inputs x with x =x . We think of Γ both as an N!×N! square i,j i j i,j matrix and as a matrix of the same dimensions as Γ that is obtained from Γ by setting to zero all the (cid:0)(cid:0)N(cid:1)−1(cid:1)N!rowsthatcorrespondtox∈/ D . 2 i,j 4.1 NecessaryandsufficientsymmetriesofΓ 1,2 Forall(π,τ)∈(S ×S )×S , wehaveUτX =X and, therefore,UτΓ =Γ Vτ. Thisis {1,2} [3,N] Σ π 1,2 1,2 π 1,2 1,2 π thenecessaryandsufficientsymmetrythatΓ mustsatisfyinorderforΓtobefixedunderallindexand 1,2 alphabetpermutations. SinceU Γ =Γ ,wealsohaveΓ V =Γ . Wehave (12) 1,2 1,2 1,2 (12) 1,2 (cid:18) (cid:19) N 1 Γ= ∑ Γ = ∑U Γ V = ∑ U Γ V , (4.1) i,j π 1,2 π−1 2 N! π 1,2 π−1 {i,j}⊂[N] π∈R π∈S[N] (cid:113) 2Letλˆ andνˆ bethepartofλandνbelowthefirstrow,respectively.Thencλ= h(λˆ)/h(νˆ)=(cid:112)Ndimν/dimλ+O(1/N). ν CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 9 ANSISROSMANIS whereR=Rep(S /(S ×S ))isatransversaloftheleftcosetsofS ×S inS . [N] {1,2} [3,N] {1,2} [3,N] [N] Let f beabijectionbetweenD andD definedas 0 1,2 f: D →D : (y ,y ,y ,...,y )(cid:55)→(y ,y ,y ,...,y ), 0 1,2 1 2 3 N 1 1 3 N andletF bethecorrespondingpermutationmatrixmappingYtoX . Letusorderrowsandcolumnsof 1,2 Γ sothattheycorrespondto f(y)andy,respectively,wherewetakey∈D inthesameorderforboth 1,2 0 (seeFigure1). Hence,F becomestheidentitymatrixonY(fromthispointonward,weessentiallythink ofX andYasthesamespace). LetusdenotethisidentitymatrixbyI. 1,2 (12) π τ a a b c c d e b b c b b a d c c ... e a e b ... c d e a d a e b e d d e d c a aacde aaced . . . bbead ccade π Γ1,2 (12) ccead τ ddbec . . . eecba Figure1: SymmetriesofΓ forN =5andΣ={a,b,c,d,e}. Withrespecttothebijection f,theorder 1,2 ofrowsandcolumnsmatches. ThesolidarrowsshowthatUτ andVτ actsymmetricallyonΓ (herewe 1,2 useτ =(aeb)(cd)∈S ),andsodoU andV forπ ∈S (hereweuseπ =(354)). However,asshown Σ π π [3,N] bythedash-dottedarrows,U actsastheidentityontherows,whileV transposesthecolumns. (12) (12) Forall(π,τ)∈S ×S wehave f(yτ)=(f(y))τ and,thus,Vτ =FVτ =UτF =Uτ,wherewe [3,N] Σ π π π π π π considertherestrictionofUτ toX . NotethatU =IonX ,whileV (cid:54)=I. Hencenowthetwo π 1,2 (12) 1,2 (12) necessaryandsufficientsymmetriesthatΓ mustsatisfyare 1,2 VτΓ =Γ Vτ forall (π,τ)∈S ×S and Γ V =Γ . (4.2) π 1,2 1,2 π [3,N] Σ 1,2 (12) 1,2 Figure1illustratesthesesymmetries. CHICAGOJOURNALOFTHEORETICALCOMPUTERSCIENCE2014,Article04,pages1–27 10
Description: